
HAL Id: tel-03872498
https://theses.hal.science/tel-03872498

Submitted on 6 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topics in high-dimensional and non-parametric inference
Julien Chhor

To cite this version:
Julien Chhor. Topics in high-dimensional and non-parametric inference. Statistics [math.ST]. Institut
Polytechnique de Paris, 2022. English. �NNT : 2022IPPAG005�. �tel-03872498�

https://theses.hal.science/tel-03872498
https://hal.archives-ouvertes.fr


574

N
N

T
:2

02
2I

P
PA

G
00

5

Topics in high-dimensional and
non-parametric inference
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Spécialité de doctorat : Mathématiques appliquées
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Remerciements

Mes plus sincères remerciements vont tout d’abord à mon directeur de thèse, Alexandre Tsybakov.
Tout au long de ces trois années, ton implication, tes encouragements et tes conseils m’ont été
extrêmement précieux. Très disponible, tu as su me guider avec beaucoup d’enthousiasme et de
bienveillance, toujours heureux de partager tes connaissances encyclopédiques et en ayant profondé-
ment à coeur la réussite de tes étudiants. Pour toutes ces raisons, je mesure la chance que j’ai eue
de débuter en recherche avec toi et j’espère que notre collaboration se poursuivra bien au-delà de
ma thèse.

I would also like to warmly thank Chao Gao and Béatrice Laurent, who generously accepted to
review this thesis and provided me with very detailed and positive reports as well as lots of con-
structive remarks. I am deeply honored and I couldn’t be more thankful. I would also like to
express my gratitude to Cristina Butucea, Richard Samworth and Yannick Baraud for agreeing to
be members of my Jury.

Je souhaite également remercier du fond du coeur toutes celles et ceux avec qui j’ai pu travailler
au cours de ma thèse. En premier lieu, un immense merci à mon encadrante de stage, Alexandra,
qui en plus d’être une mathématicienne particulièrement douée, est une personne remarquable par
sa gentillesse et son dévouement. Je tiens également à remercier Olga, avec qui c’est un vrai plaisir
de travailler. Merci également à Jaouad, qui m’a énormément appris.

Cette aventure aurait été bien différente si je n’avais pas rencontré de camarades aussi formidables.
Merci à Flore pour ton enthousiasme communicatif et pour toutes les heures passées à s’entraider.
Suzanne, merci pour ta gentillesse et pour tous les moments musicaux dont je me souviendrai bien
longtemps. Merci à Yannis de toujours veiller à la bonne ambiance du labo et de sensibiliser les
gens à l’écologie. Un grand merci également à Alexandre, Amir, Arshak, Arya, Aurélien, Avo, Badr,
Clara, Côme, Corentin, Dang, Davit, Etienne, Evgenii, Fabien, François-Pierre, Gabriel, Geoffrey,
Hugo, Jérémy, Jules, Lionel, Lucas, Lucie, Maria, Martin, Meyer, Nayel, Nicolas, Sasila, Simo,
Solenne, Théo, Xiao, Yann, Yannick, Younès, Zong. Merci aux membres permanents du CREST,
Arnak, Nicolas, Anna, Victor-Emmanuel, Jaouad, Cristina, Matthieu, Guillaume, Vianney pour
toutes ces discussions pleines de bons conseils.

Merci aussi à mes amis, sur qui je sais que je pourrai toujours compter. Une liste loin d’être
exhaustive: Timothée, Guillaume, Pauline, Pierre-Etienne, Clément, Olivier, Ruihua, Quentin,
Mathieu, Cyril, Tarek, Chenzhang, Pierre, Tom, Amélie, Galatée, Vincent, Antoine, Angelica.

1



Merci à Thomas, qui continue de me suivre même depuis Singapour, et à Léo, pour toutes ces
belles aventures. Merci enfin à mes parents et à ma petite soeur, qui m’ont toujours soutenu et ont
toujours su m’aider à faire les bons choix.

2



3



Contents

1 Introduction 9
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Minimax testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Goodness-of-fit testing problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Classical rates for signal detection . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Local testing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Inference with learning constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Local differential privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.2 Robustness to outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.3 Combining robustness with privacy . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Benign overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.1 Ridge (and ridgeless) regression . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.4.2 Kernel ridge(less) regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4.3 Non-parametric regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.1 Chapter 2: Local Goodness-of-fit testing in discrete models . . . . . . . . . . 24
1.5.2 Chapter 3: Local Goodness-of-fit testing for Hölder continuous densities . . . 24
1.5.3 Chapter 4: Robust estimation of discrete distributions under local differential

privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.4 Chapter 5: Benign overfitting in adaptive non-parametric regression . . . . . 25

1.6 Tests Minimax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6.1 Problème du Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6.2 Vitesses classiques pour la détection de signal . . . . . . . . . . . . . . . . . . 29
1.6.3 Tests locaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.7 Inférence sous contrainte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7.1 Confidentialité locale différentielle . . . . . . . . . . . . . . . . . . . . . . . . 31
1.7.2 Robustesse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.7.3 Combinaison des deux contraintes . . . . . . . . . . . . . . . . . . . . . . . . 34

1.8 Overfitting bénin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8.1 Régression Ridge (et Ridge-less) . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.8.2 Kernel ridge(less) regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.8.3 Régression non-paramétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4



I Minimax testing 38

2 Sharp Local Minimax Rates for Goodness-of-Fit Testing in multivariate Bino-
mial and Poisson families and in multinomials 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.2 Minimax Testing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3.1 Equivalence between the Binomial, the multinomial and the Poisson setting . 44

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.1 Locality of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.2 Comparison with existing literature in the multinomial case . . . . . . . . . . 47

2.5 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.6 Upper bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6.1 Remarks on the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.7 Further remarks on the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.7.1 Influence of the ℓt norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7.2 Asymptotics as n→∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.A Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.B Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.B.1 Under the null hypothesis H0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.B.2 Under the alternative hypothesis H1(ρ) . . . . . . . . . . . . . . . . . . . . . 70

2.C Equivalence between the Binomial, Poisson and Multinomial settings . . . . . . . . . 78
2.D Tightness of [104] in the multinomial case . . . . . . . . . . . . . . . . . . . . . . . . 84

3 Goodness-of-Fit Testing for Hölder-Continuous Densities: Sharp Local Minimax
Rates 86
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.1 Definition of the class of densities P(α,L) . . . . . . . . . . . . . . . . . . . . 89
3.2.2 Minimax testing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.3.1 Partitioning the domain Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Bulk regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.1 Bulk upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.2 Bulk lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.5 Tail regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.5.1 Tail upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.5.2 Tail lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6.1 Discussion of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.6.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5



3.6.3 Comparison with prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.A Relations between the cut-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.B Partitioning algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.C Upper bound in the bulk regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.C.1 Technical lemmas in the bulk regime . . . . . . . . . . . . . . . . . . . . . . . 115
3.C.2 Analysis of the upper bound in the bulk regime . . . . . . . . . . . . . . . . . 120
3.C.3 Proof of Corollary 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.D Lower bound in the bulk regime: Proof of Proposition 3.2 . . . . . . . . . . . . . . . 127
3.D.1 Proof of Proposition 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.D.2 Proof of Proposition 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.D.3 Proof of Proposition 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.D.4 Technical results for the LB in the bulk regime . . . . . . . . . . . . . . . . . 131

3.E Upper bound in the tail regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.E.1 Under H0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3.E.2 Under the alternative when the tail dominates . . . . . . . . . . . . . . . . . 133
3.E.3 Under H1(C ′′ρ∗

bulk) when the bulk dominates . . . . . . . . . . . . . . . . . . 135
3.E.4 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.F Lower bound in the tail regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.F.1 Proof of Proposition 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.F.2 Proof of Proposition 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
3.F.3 Proof of Proposition 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
3.F.4 Proof of Proposition 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.F.5 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

3.G Homogeneity and rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.H Proofs of examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

3.H.1 Uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
3.H.2 Arbitrary p0 over Ω = [−1, 1]d with L = 1 . . . . . . . . . . . . . . . . . . . . 162
3.H.3 Spiky null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.H.4 Gaussian null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.H.5 Pareto null . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

II Estimation with learning constraints 164

4 Robust learning under local differential privacy 165
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.1.2 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.2 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.3.1 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.4 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6



4.4.1 Description of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.4.2 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

4.5 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.A.1 Proof of Lemma 6, Law of the sum . . . . . . . . . . . . . . . . . . . . . . . . 179
4.A.2 Proof of Lemma 1, Essential properties of good batches . . . . . . . . . . . . 179
4.A.3 Proof of Lemma 2, Variance gap to estimation error . . . . . . . . . . . . . . 183
4.A.4 Proof of Lemma 3, Matrix expression . . . . . . . . . . . . . . . . . . . . . . 185
4.A.5 Proof of Lemma 4, Grothendieck’s inequality corollary . . . . . . . . . . . . 186
4.A.6 Proof of Lemma 5, Score good vs. adversarial batches . . . . . . . . . . . . . 187
4.A.7 Auxiliary Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.B Proof of Corollary 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.C Lower bound: Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4.D Simpler proof of the lower bound with privacy and no outliers . . . . . . . . . . . . . 199

III Benign overfitting 202

5 Benign overfitting in adaptive nonparametric regression 203
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.2.3 Hölder classes of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

5.3 Local polynomial estimators and interpolation . . . . . . . . . . . . . . . . . . . . . . 207
5.4 Minimax optimal interpolating estimator . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.5 Adaptive interpolating estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7



8



Chapter 1

Introduction

1.1 Introduction
This thesis explores some topics in minimax testing (Part I, Chapters 2 and 3), estimation with
learning constraints (Part II, Chapter 4) and benign overfitting in non-parametric regression (Part III,
Chapter 5).

• The first part (Chapters 2 and 3) is devoted to minimax testing. Given n i.i.d. observa-
tions with distribution p, the goodness-of-fit testing problem aims at testing equality to a
given probability distribution p0, against an alternative composed of distributions separated
from p0 with respect to some distance over the considered class of distributions. We consider
two goodness-of-fit testing problems. The first one concerns the discrete case (Chapter 2),
where the observations can be multivariate Binomial or Poisson families or follow multinomial
distributions. The second one (Chapter 3) is an extension of the first to the continuous case,
where the observations are i.i.d. with some probability density over Rd that belongs to the
Hölder class of function with known parameters α,L > 0. In both cases, we are interested in
the local version of the problem (see Subsection 1.2.3)

• The second part proposes to study an estimation problem under learning constraints. Namely,
in Chapter 4, we study the interactions between robustness to adversarial contamination and
local differential privacy in the context of learning discrete distributions.

• In the third part (Chapter 5), we consider the setting of non-parametric regression. We
propose an estimator of the regression function that is minimax optimal adaptively to the
unknown smoothness, and that continuously interpolates the data points with high probability
- a phenomenon called “benign overfitting”.

The notation may change from chapter to chapter.

1.2 Minimax testing
Let P =

{
Pθ | θ ∈ Θ

}
denote a family of probability distributions over a measurable space (X ,U),

where Θ is a set of parameters, not necessarily finite-dimensional. Let Θ0, Θ1 ⊂ Θ be two disjoint
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subsets of Θ : Θ0 ∩ Θ1 = ∅. We observe n ∈ N∗ i.i.d. datapoints X1, . . . ,Xn
iid∼ Pθ for some

unknown θ ∈ Θ. Given X1, . . . ,Xn, we consider the testing problem:

H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1. (1.1)

Definition 1.1. A test is a measurable function of the observations taking its values in {0, 1}:

ψ : X n −→ {0, 1}.

In this work we focus on constructing minimax optimal tests. There are essentially three paradigms
for studying the quality and optimality of a test.

1. Neyman-Pearson’s approach: Neyman-Pearson’s approach [1] is well adapted if H0 is the
hypothesis that one wishes to believe by default, unless the data provides strong evidence
against it. The Type-I error probability of a test ψ is defined as the worst-case probability
of deciding in favor of H1 if H0 holds: supθ∈Θ0 Pθ(ψ = 1) while the Type-II error function
is the function Θ1 −→ [0, 1]; θ 7→ Pθ(ψ = 0). This paradigm posits that among the two
possible errors (deciding wrongly in favor of H1 or deciding wrongly in favor of H0), deciding
wrongly in favor of H1 is the most dangerous one. An ideal test would never wrongly reject
H0 – however, in usual cases, the only test having 0 Type-I error probability is the trivial test
ψ ≡ 0. It is therefore necessary to allow the tests to have a small Type-I error probability,
constrained to be at most α for some α ∈ [0, 1] chosen beforehand. Under this constraint, the
optimal test ψNP would be the test performing uniformly in the best way at each point of Θ1,
hence having uniformly the smallest Type-II error function. Mathematically, the optimal test
ψNP would solve the following problem: ∀θ ∈ Θ1, Pθ (ψNP = 0) = infψ∈Ψα Pθ (ψ = 0) where
Ψα denotes the set of all tests with Type-I error probability at most α. Such a test, called
a uniformly most powerful test is not guaranteed to exist. Therefore, the Neyman-Pearson
approach does not allow for a universal notion of optimality.

2. Bayesian approach: In the Bayesian approach, one defines a prior probability distribution π
over Θ0∪Θ1 and looks for a test ψ minimizing the Bayes risk defined as Eθ∼π

[
Pθ

(
ψ = 1θ∈Θ0

)]
,

if such a test exists. Here Eθ∼π denotes the expectation with respect to π and 1 denotes the
indicator function. In this approach, it is always guaranteed that at least one test ψ∗ has
a Bayes risk satisfying Eθ∼π

[
Pθ

(
ψ∗ = 1θ∈Θ0

)]
= inf

ψ
Eθ∼π

[
Pθ

(
ψ = 1θ∈Θ0

)]
. Therefore, the

notion of optimality is well-defined. The drawback of this approach is that the choice of π is
subjective and different choices of π lead, in general, to different solutions.

3. Minimax approach: The minimax paradigm has been widely studied since Wald (1949)
and more recently developed in the context of tests in the works of Yuri Ingster, see [183]
for a detailed account. The Type-I error of a test ψ is defined as maxθ∈Θ0 Pθ(ψ = 1) and
the Type-II error of ψ as maxθ∈Θ1 Pθ(ψ = 0). One measures the quality of a test through its
risk, defined as the sum of its Type-I and Type-II errors: RΘ0,Θ1(ψ) = supθ∈Θ0 Pθ (ψ = 1) +
supθ∈Θ1 Pθ (ψ = 0). In this paradigm, H0 and H1 therefore play equally important roles and
one aims at constructing tests that have both small Type-I and Type-II errors in the worst
case. As we will see later on, this approach always ensures that there exist optimal tests in a
sense defined below.
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In what follows, we place ourselves in the minimax setting. We first give some definitions that will
be used in the thesis. The minimax risk is defined as the risk of the best test, if any.

Definition 1.2. The minimax risk associated with Problem (1.1) is defined as

R∗
Θ0,Θ1 = inf

ψ
RΘ0,Θ1(ψ)

= inf
ψ

{
sup
θ∈Θ0

Pθ (ψ = 1) + sup
θ∈Θ1

Pθ (ψ = 0)
}

,

where the infimum is taken over all tests ψ.

Note that if Θ0, Θ1 ⊆ Θ are such that R∗
Θ0,Θ1

= 1, then random guessing is optimal. Indeed, define
the test ∆̃ that takes values 1 and 0 with probability 1

2 independently of the observed data. Its risk
is equal to

RΘ0,Θ1(∆̃) = sup
θ∈Θ0

Pθ

(
∆̃ = 1

)
+ sup

θ∈Θ1

Pθ

(
∆̃ = 0

)
=

1
2 +

1
2 = 1.

Thus, if R∗
Θ0,Θ1

= 1, then ∆̃ is optimal, so that the problem has trivial solution. It is therefore
natural to consider only the testing problems where R∗

Θ0,Θ1
is smaller than 1, and we will assume

from now on that RΘ0,Θ1(∆̃) ≤ η where η < 1 is chosen in advance. Minimax testing with composite
null hypothesis has been studied in a wide variety of settings, see for instance [155, 135, 71, 173,
166, 40] to cite but a few. However, in the present thesis, we will focus on the particular case where
H0 is simple.

1.2.1 Goodness-of-fit testing problem

The case of a simple null hypothesis is referred to as the goodness-of-fit testing problem. Assume
that Θ is a metric space equipped with the distance dist and fix η ∈ (0, 1) as well as θ0 ∈ Θ.
The total variation between two probability measures Pθ and Pθ′ is defined as TV (Pθ, Pθ′) =

supU∈U

∣∣∣Pθ(U)−Pθ′(U)
∣∣∣. We assume that the total variation distance is continuous with respect to

dist. For ρ > 0, the goodness-of-fit testing problem, also called the identity testing problem,
is defined as follows:

H0 : θ = θ0 against H
(ρ)
1 :

θ ∈ Θ,
dist(θ, θ0) ≥ ρ.

(⋆)

One could wonder why the testing problem is not defined as

H ′
0 : θ = θ0 against H ′

1 :

θ ∈ Θ,
θ ̸= θ0.

(1.2)

To understand why, denote by R∗ the minimax risk of problem (1.2). In this case, for any θ1 ̸= θ0,
we would have

1 ≥ inf
ψ

{
Pθ0(ψ = 1) + Pθ1(ψ = 0)

}

11
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= 1 + inf
ψ

{
Pθ1(ψ = 0)−Pθ0(ψ = 0)

}
= 1− sup

U∈U
Pθ1(U)−Pθ0(U)

= 1− sup
U∈U

∣∣Pθ1(U)−Pθ0(U)
∣∣

= 1− TV (Pθ0 , Pθ1) −→ 1 when dist(θ1, θ0)→ 0,

since the total variation distance is continuous with respect to dist. For testing problem (1.2), we
therefore have R∗

Θ0,Θ1
= 1. In other words, random guessing is optimal and the problem is trivial.

To ensure that the minimax risk is less than η ∈ (0, 1), we therefore define the goodness-of-fit
testing problem as in (⋆). To do this, we introduce the notation

R∗(ρ) = inf
ψ

[
Pθ0(ψ = 1) + sup

{
Pθ(ψ = 0)

∣∣∣ θ ∈ Θ, dist(θ, θ0) ≥ ρ
}]

(1.3)

to denote the minimax risk associated with problem (⋆). Noting that ρ 7→ R∗(ρ) is a non-increasing
function, we aim at finding the smallest separation distance ρ > 0 ensuring that R∗(ρ) ≤ η.

Definition 1.3. [Minimax separation radius] The minimax separation radius of problem (⋆) is
defined as

ρ∗(n, θ0, Θ, dist, η) = inf
{
ρ > 0

∣∣∣ R∗(ρ) ≤ η
}

.

Moreover, we denote the risk of any test ψ by

R(ρ,ψ) := Pθ0(ψ = 1) + sup
{

Pθ(ψ = 0)
∣∣∣ θ ∈ Θ, dist(θ, θ0) ≥ ρ

}
.

The aim of the goodness-of-fit testing problem is two-fold:

1. Derive ρ∗ up to multiplicative constants.

2. Find a test ψ∗ and a constant C > 0 such that R(Cρ∗,ψ) ≤ η. Such a test is called a minimax
optimal test.

Remark: In the literature, the goodness-of-fit testing problem is sometimes formulated in an alter-
nate way. In the above definition, we fixed the number of observations n and aimed at deriving the
corresponding minimax separation radius ρ∗. However, the testing problem can also be expressed
in terms of sample complexity: For a fixed precision ϵ > 0, derive how many observations n∗ are
necessary and sufficient, up to a multiplicative constant depending only on η, dist and Θ, in order
for the testing problem

H0 : θ = θ0 against H1(ϵ) :

θ ∈ Θ,
dist(θ, θ0) ≥ ϵ,

to have a minimax risk at most η. This problem statement can be understood as a dual version of
the statement based on the fixed number of observations and Definition 1.3 and often leads to very

12
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similar results. This convention is the most popular in the computer science community (see for
instance [71, 95, 81, 100, 67]), whereas the formulation based on the fixed number of observations
and Definition 1.3 is standard in the statistics community.

1.2.2 Classical rates for signal detection

In the framework described above, the problem of signal detection is defined as the special case
where Θ0 = {0}. One of the earliest papers on the subject is [13] where the observations are
assumed to follow the Gaussian white noise model, which we define below. The series of subsequent
papers [22] is regarded as a landmark in non-parametric signal detection. The case where Θ is an
ellipsoid is considered in [20], and the case where Θ is a Sobolev or Besov ball is considered in [26],
[182], [31] to cite just a few. The above references all deal with the asymptotic regime. On the
contrary, the present thesis will focus on non-asymptotic rates, which are less common in the
literature (see for instance [36], [59], [87], [162], [44], [174], [51]). We do not give a comprehensive
survey of the literature and we refer the reader to [183] for an excellent overview. We will limit
ourselves to reviewing the classical facts that are helpful to be compared with the results developed
in the thesis.

Gaussian setting

The spherical Gaussian framework represents one of the most classical problems studied in signal
detection. For d ≥ 1, assume that we observe X1, . . . ,Xn

iid∼ N (θ, Id) where Id denotes the identity
matrix of size d and θ ∈ Rd. The testing problem can be written as

H0 : θ = 0 against H1(ρ) :

θ ∈ Rd,
∥θ∥2 ≥ ρ,

(1.4)

where ρ > 0 and ∥ · ∥2 denotes the Euclidean norm. In this classical case, the minimax separation ra-
dius is known to be ρ∗ ≍ d

1
4 /
√
n and the minimax optimal test can be written as 1

{
∥X̄n∥22 ≥ d+ c

}
where c > 0 is a constant and X̄n = 1

n

∑n
i=1Xi (see for example [162], [87]). It follows that, for

any precision ϵ > 0, testing equality to 0 against the alternative ∥θ∥22 ≥ ϵ2 is only possible if n ≳
√
d
ϵ2 .

The interest of this result is best understood when compared with the corresponding estima-
tion problem. Given X1, . . . ,Xn

iid∼ N (θ, Id), the minimax estimation risk over Rd (defined as
inf

θ̂
supθ∈Rd E∥θ̂ − θ∥2) is known to be equal to d

n , and can be achieved by the empirical mean
θ̂ = X̄n. In other words, for any precision ϵ > 0, building an estimator θ̂ of θ with an estimation
risk supθ∈Rd E∥θ̂− θ∥2 ≤ ϵ2 is only possible when n ≥ d

ϵ2 .

Therefore, an interesting phenomenon arises when
√
d
n ≲ ∥θ∥22 ≪ d

n . On the one hand, detecting
from the data that θ ̸= 0 is possible with high probability. But on the other hand, no estimator
can outperform the trivial estimator equal to 0. This point illustrates an important advantage of
testing over estimation. Although it only provides a binary piece of information (thus being more
limited than what estimation offers), testing achieves faster rates than estimation. In high dimen-
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sions, this improvement can help considerably reduce the sample size needed for drawing statistical
conclusions.

Consequently, goodness-of-fit testing has received considerable attention over the past decades,
and the Gaussian setting with L2 separation has been extensively studied see for example [183]).
Beyond the L2 case, some works such as [111] investigated the effect of the separation distance on
the minimax separation radius as well as on the minimax tests. Namely, given X ∼ N (θ,σ2Id),
the work [111] considers the following testing problem:

H0 : θ = 0 against H1 : θ ∈ Rd, ∥θ∥t ≥ ρ, (1.5)

for t ≥ 1, and shows that the minimax separation radius scales as ρ∗ ≍ σd
1
t
− 1

4 when t ∈ [1, 2] and
as ρ∗ ≍ σd

1
2t otherwise.

Nonparametric setting

A non-parametric variant of the spherical Gaussian setting described above is the Gaussian white
noise model, where one observes the random process Xt defined via dXt = f(t)dt+σdWt, t ∈ [0, 1],
and where (Wt)t denotes a standard Wiener process. Assume that the unknown signal f belongs
to a Sobolev class W (β,L) (see [188] for the definition) for some β,L > 0. In this nonparametric
setting, the signal detection problem is defined as follows:

H0 : f = 0 against H1(ρ) :

∥f∥2 ≥ ρ,
f ∈W (β,L).

(1.6)

For this problem, the minimax separation radius is of the order of σ
4β

4β+1 (see [183]). This nonpara-
metric model is closely related to the previous one in the periodic case: Namely, one can show that
by projecting onto the Fourier basis, the Gaussian white noise model is equivalent to the Gaussian
sequence model

Yj = θj + σξj , j ∈N,

for ξj iid∼ N (0, 1) and θ ∈ Q(β,L) where Q(β,L) =

{
θ ∈ ℓ2(N) :

∑
j∈N

θ2
j j

2 ≤ L2

π2β

}
, cf. [188]. By

the Parseval identity, problem (1.6) can be equivalently re-written as

H0 : θ = 0 against H1(ρ) :

∥θ∥2 ≥ ρ,
θ ∈ Q(β,L),

(1.7)

which is closely related to Problem (1.4).

We can now introduce the most closely related problem to the results developed in this thesis.
This problem aims at testing equality to the uniform distribution over [0, 1]d against an alternative
composed of Hölder-continuous densities over [0, 1]d and separated from the null hypothesis in
L2 distance [179]. Denoting by p0 the uniform density over [0, 1]d and given n i.i.d. observations
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X1, . . . ,Xn with Hölder-smooth density p over [0, 1]d and known smoothness parameter α > 0, this
problem consists in testing

H0 : p = p0 against H1(ρ) :

∥p− p0∥2 ≥ ρ,
p ∈ H(α).

(1.8)

Here H(α) denotes the class of α-Hölder continuous functions over [0, 1]d with smoothness pa-
rameter α and Lipschitz constant normalized to 1. The asymptotic minimax separation radius as
n→∞ is known to be ρ∗ ≍ n− 2α

4α+d , see e.g. [22]. Again, we can compare this rate with the mini-
max estimation rate of a Hölder-smooth density in H(α) which is known to be n− α

2α+d (see [188]),
always slower than the non-parametric testing rate.

Density testing problems or estimation of the quadratic functional have also been considered in [24,
44, 42, 27, 33].

1.2.3 Local testing problem

In this subsection, we introduce a further distinction between local and global testing problems. We
assume that Θ, dist and η are fixed. The local version of problem (⋆) aims to determine how ρ∗ pre-
cisely depends on θ0 and n, see e.g. [104], [95]. Conversely, the global testing problem only establishes
the worst-case of all separation radii ρ∗(n, θ0) for θ0 in the class Θ: ρ∗

global(n) := sup
θ0∈Θ

ρ∗
local(n, θ0).

A local dependency of ρ∗ on θ naturally arises when the variance of the observations depends on the
parameter θ involved in the testing problem. For example, assume that we observe X ∼ N (θ, Id)
and that we fix θ0 ∈ Rd. Consider the following Gaussian testing problem

H0 : θ = θ0 against H1 :

θ ∈ Θ,
∥θ− θ0∥2 ≥ ρ.

In this testing problem local and global minimax separation radii do not differ, as the covariance
matrix remains equal to Id independently of θ0. Therefore, in the spherical Gaussian setting,
testing equality to any θ0 ∈ Rd is equally difficult. This is no longer the case in the Bernoulli
setting. Indeed, for some fixed p0 ∈ [0, 1] and for observations X1, . . . ,Xn

iid∼ Ber(p) distributed as
Bernoulli random variables with parameter p ∈ [0, 1], consider the following goodness-of-fit testing
problem:

H0 : p = p0 against H1(ρ) :

p ∈ [0, 1],
|p− p0| ≥ ρ.

In this model, a sufficient statistic is the sum ∑n
i=1Xi, whose variance

√
np(1− p) depends on

the parameter p involved in the testing problem. Here, ρ∗(n, p0) exhibits a very different behav-
ior from the global separation radius when p0 varies in [0, 1]. For p0 = 1

2 , the separation radius
scales as ρ∗(n, 1

2 ) ≍ 1/
√
n and attains the global separation radius, while for p0 = 0, it reduces to

ρ∗(n, 0) ≍ 1/n (these claims follow from Theorem 2.1 proved below). This very simple example
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therefore illustrates that local rates can considerably refine the global ones. Locality will represent
one of the major points of focus in the present thesis.

1.3 Inference with learning constraints
The second part (Chapter 4) of this thesis is devoted to estimating discrete distributions under
learning constraints. This chapter aims at studying the interactions between local differential
privacy and robustness to outliers in this estimation problem. Here we briefly introduce the settings
of local differential privacy and of robust statistics.

1.3.1 Local differential privacy

One of the major challenges posed by today’s data is to protect the user’s privacy when collecting
potentially sensitive information. For instance, a large amount of the collected data, such as medical
data, can be sensitive, meaning that they contain information that should not be disclosed to the
statistician. In order to ensure confidentiality, many solutions have been considered.

• Anonymize the data: A first naive solution consists in removing the individuals’ names without
further modifying the dataset. While this method can seem to preserve confidentiality, the
resulting dataset is in fact extremely vulnerable. Indeed, it has experimentally been shown
in [34] that 87% of the US population could be indirectly identified using only the following
pieces of information: {date of birth, gender, ZIP}. By combining different datasets, an
attacker could therefore be able to recover some sensitive information concerning the majority
of the users.

• Cryptography: In order to protect user’s privacy, cryptography can be employed to collect
data in an encrypted way so that individual information cannot be deduced from its encoded
version. A typical example is when a user needs to access the computational power of a cloud
computing service, but refuses to disclose the sensitive information to this entity. In this case,
such cryptography methods as homomorphic encryption or Secure multiparty computation
can be employed. However, many issues can arise when using cryptography. First, its compu-
tational cost can be large. Second, such procedures may not be statistically robust if some of
the collected data are contaminated, for example according to a Huber contamination model
(see the definition in Section 1.3.2). Third, an attacker that would hack the encryption key
could recover all the sensitive information that this method aims at protecting.

• Differential privacy: To address cryptography’s latter drawback, the Differential Privacy
technique proposes to randomly perturb the data, often by adding noise to it. The added
noise should be sufficiently strong to ensure that none of the individual data can be recovered
with sufficient precision from its noisy counterpart. At the same time, the noise should be
weak enough to ensure that characteristics of the global population can be inferred when
observing sufficiently many individuals. As opposed to cryptography methods, this technique
guarantees a fundamental impossibility of revealing sensitive information even under attacks.
Though using this technique often leads to computationally tractable methods, their statistical
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cost can be heavy or even prohibitive, as we will see later on. It is therefore of primary interest
to understand under which conditions differential privacy can be efficiently used, which is one
of the themes addressed in this thesis.

Below, we consider the problem of estimating discrete distributions under differential privacy. We
briefly formalize this notion. Let X = (X1, . . . ,Xn) be a random vector in the measurable space
(X n,An, Pn). We would like to produce a new random variable Z, called the privatized version
of X. Formally, the random variable Z takes its values on a second measurable space (Z,B) and
is generated using the mechanism Z|X = x ∼ Q(·|x) where Q(· |·) is a Markov Kernel also called
the “Privacy Mechanism”. More precisely, for all x ∈ X n, we assume that Q(·|x) is a probability
distribution, and that Q(A | · ) is a measurable function for all A ∈ An. Let α ∈ (0, 1). There are
two main approaches to define the differential privacy constraint.

1. Central (or global) differential privacy: A privacy mechanism Q is said to be globally
differentially private [46, 43] if for all A ∈ B and for all x,x′ ∈ X n such that∑n

i=1 1{xi ̸=x′
i} = 1,

we have
Q(A|x)
Q(A|x′)

≤ eα.

The statistician should never access (X1, . . . ,Xn) which is the reason why we produce Z.
However, this approach unfortunately requires that some central unit be trusted to access
the whole dataset (X1, . . . Xn) in order to produce the privatized data Z. This setting is
therefore very vulnerable to attacks if the central unit is hacked and the whole sensitive
dataset (X1, . . . ,Xn) is revealed.

2. Local differential privacy: To address this issue, a second formalism was proposed in [54].
The idea is to generate the privatized datapoint Zi when actually collecting the data. Each
user is responsible for sending their privatized datapoint Zi ∼ Q(·|Xi) to the statistician
without ever revealing the true value Xi. Formally, a privacy mechanism Q satisfying
Q(dz|x) = Q(dz1|x1)Q(dz2|x2, z1) . . . Q(dzn|xn, z1, . . . , zn−1) is said to be locally differen-
tially private if for any A ∈ B, any i ∈ [n], any z1, . . . zi−1 ∈ Z i−1, and any x,x′ ∈ X , we
have

Q(A|x, z1, . . . , zi−1)

Q(A|x′, z1, . . . , zi−1)
≤ eα. (1.9)

This method never assumes the existence of a central unit, as each privatized data Zi is generated us-
ing only Xi and all of the publicly available data Z1, . . . ,Zi−1. A privacy mechanism satisfying (1.9)
is said to be an interactive mechanism. A more restricted class of privacy mechanisms can be de-
fined as follows. A privacy mechanism Q is said to be non-interactive if Q(dz|x) = ∏n

i=1Qi(dzi|xi)
where each Markov Kernel Qi satisfies

Qi(A|x)
Qi(A|x′)

≤ eα, ∀x,x′ ∈ X . (1.10)

This is the class of all local differential privacy mechanisms generating each privatized data Zi using
Xi only. This class of mechanisms allows the statistician to collect the data in parallel, each indi-
vidual being privatized independently. In contrast, general interactive mechanisms defined in (1.9)
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require the data to be collected sequentially, which appears a major drawback. However, interactive
mechanisms have been shown to achieve better statistical performance than non-interactive ones
in certain settings [126, 124]. In such cases, they should be preferred whenever possible, especially
given the high statistical cost of local differential privacy.

We now explain why (1.9) is a natural definition for a privacy mechanism. This condition formalizes
the fact that, given Zi, no inference is possible about the original Xi, even with the knowledge
of the publicly available data Z1, . . . Zi−1. To appreciate why, let us fix z1, . . . , zi−1 ∈ Z and
assume that we observe the privatized data Zi. For any x ∈ X , define the probability measure
Px(·) = Q(·|x,Z1, . . . ,Zi−1) and consider the family of two-point testing problems

H0 : Zi|Xi,Z1, . . . ,Zi−1 ∼ Px against H1 : Zi|Xi,Z1, . . . ,Zi−1 ∼ Px′ , (1.11)

for any pair x,x′ ∈ X . Fixing x,x′ ∈ X , the likelihood ratio test ψ := 1

{
dPx
dPx′

(Zi) > 1
}

is
optimal in the sense that it minimizes the sum of Type-I and Type-II errors over all tests. Let
A =

{
dPx
dPx′

(Zi) > 1
}

, then the risk R(ψ) = Type-I + Type-II error satisfies:

R(ψ) = Px(A) + 1−Px′(A) = 1 + Px(A)−Px′(A)

Px(A)
Px(A)

≥ 1 + (1− eα) using (1.9)
≥ 1− eα for α ∈ (0, 1).

We recall that random-guessing has a minimax risk equal to 1 (see Section 1.2). We also recall the
formalism of Section 1.2 and fix η ∈ (0, 1). Under the constraint (1.9), we can therefore choose
α small enough to make any of the testing problems (1.11) infeasible for any pair x,x′ ∈ X . By
“infeasible”, we mean that the minimax risk of any such problem will always be greater than η.
Therefore, condition (1.11) is akin to imposing that no inference is possible about Xi when observ-
ing Z1, . . . ,Zi.

In this thesis, we propose to estimate discrete distributions under local differential privacy and
contamination (see Section 1.3.2). Estimating discrete distributions under local differential privacy
alone has been considered in [62]. The paper [62] discusses two privacy mechanisms for discrete
distributions.

• The RAPPOR mechanism, introduced in [62], [82]. Let d ≥ 2 and X ∈ [d] be a random
variable (we do not specify its distribution). The variable X can be privatized as follows. We
define the random vector Z ∈ {0, 1}d with mutually independent entries conditionally on X,
such that

∀j ∈ [d] : Z(j) =

1X=j with probability 1− λ,
1− 1X=j with probability λ,

where λ = 1
eα/2+1 . The above channel, denoted by Q, is α-locally differentially private.

Indeed, fix any x,x′ ∈ [d] and define ex = (1x=j)dj=1 and ex′ = (1x′=j)
d
j=1. Then, for any
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vector z ∈ {0, 1}d we have y definition of Z:

Q(Z = z|x) = λ1−zx(1− λ)zx
∏
j ̸=x

λzj (1− λ)1−zj ,

and noting that λ

1− λ = e−α/2, we get

Q(Z = z|x)
Q(Z = z|x′)

=

(
λ

1− λ

)2zx (1− λ
λ

)2zx′

= exp
(
α(zx′ − zx)

)
∈
[
e−α, eα

]
.

• The Laplace mechanism. Let W1, . . . ,Wd be i.i.d.random variables with distribution Λ(1)
independent of X. Here Λ(1) stands for the standard Laplace distribution. The random
vector Z = (1X=j)dj=1 +

2
α (W1, . . . ,Wd) is a privatized version of X and we can check that

the corresponding mechanism is α-LDP. Indeed, for any two points x,x′ ∈ [d], defining
ex = (1x=j)dj=1 and ex′ = (1x′=j)

d
j=1 and fixing any vector z ∈ Rd, we have

Q(Z = z|X = x)

Q(Z = z|X = x′)
= exp

(
α

2 (∥z − ex∥1 − ∥z − ex
′∥1)

)
∈
[
e−α, eα

]
.

For multinomial estimation, this mechanism is slightly better than the RAPPOR mechanism,
in the sense that it improves the minimax estimation risk by an absolute constant factor.

Local differential privacy comes with a high statistical cost, as it requires that nearly all the in-
formation contained in the original data should be lost when generating the privatized data. For
multinomial estimation, [62] observed that under α local differential privacy, the minimax rate
with n observations is the same as the rate with nα2/d observations with no privacy. The effect
of privacy therefore amounts to shrinking the number of observations by a factor α2/d, which, in
high dimension, can be prohibitive.

More precisely for discrete distribution over d elements, the minimax estimation rate in total
variation under α local differential privacy is d

α
√
n

where n denotes the number of i.i.d. observa-
tions [37, 54]. Comparing this rate with the minimax estimation rate without the privacy con-
straint, known to be

√
d
n [73], we note that estimating a discrete distribution under α-LDP with n

observations is as difficult as estimating the same distribution without privacy but with only α2n
d

observations.

1.3.2 Robustness to outliers

One of the most classical assumptions in statistics is to consider that the data are i.i.d.However, this
assumption may fail to hold in practice, especially when working with large datasets. To weaken
this assumption, a very popular approach is to assume that only one part of the datapoints, called
‘inliers’, are i.i.d. with some true distribution of interest. The remaining part, referred to as
‘outliers’ or ‘contamination’, consists of data points which do not follow the target distribution.
In this case, we say that the dataset is contaminated. Informally, the goal of robust learning is
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to build estimators that are not much affected by contamination, while being statistically nearly
as good as the optimal estimators in absence of contamination, see e.g. [127, 121, 86]. Of course,
contamination often degrades the statistical rates and an interesting question is to quantify to what
extent. There are several different ways to define contamination, as summarized in [123].

1. Huber’s contamination [21], [5]: This is one of the most commonly studied contamination
models. It supposes that there exist two unknown probability distributions p and q as well as
a level of contamination ϵ ∈ (0, 1

2 ). The i.i.d. observations X1 . . . ,Xn are assumed to follow
the mixture model (1− ϵ)p+ ϵq where p is the target distribution, while q is an unknown
contamination. Note that the number of outliers is random and follows Bin(n, ϵ).

2. Huber’s deterministic contamination: A distribution is said to follow the Huber deter-
ministic contamination model if there exists a set O ⊂ [n] of cardinality at most ⌈nϵ⌉ and
two distributions p, q such that for all i /∈ O, Xi ∼ p and for all i ∈ O, Xi ∼ q and all of the
observations X1, . . . ,Xn are mutually independent.

3. Oblivious contamination: This model is similar to the Huber’s deterministic contamina-
tion, except that the family of outliers follows some joint distribution QO. Hence, the outliers
are not assumed to be i.i.d.

4. Parameter contamination: For some set of outliers O chosen in advance, the outliers
Xi, i ∈ O are independent from the inliers Xi, i /∈ O, and each outlier Xi, i ∈ O is drawn from
some distribution qi, belonging to the same class as p.

5. Adversarial contamination: Together with the Huber contamination model, this is one of
the most popular models, on top of being the most general one. In this model, clean i.i.d.data
X1, . . . Xn are generated from a distribution p. For some ϵ ∈ (0, 1

2 ), an adversary replaces
⌈nϵ⌉ of the data with new data points. Nothing is assumed the outliers: They are allowed
to be deterministic or random, or to arbitrarily dependent on one another and on the inliers.
Alternatively, another popular approach is to assume that n− ⌈nϵ⌉ datapoints are drawn
i.i.d.with distribution p and that the remaining ⌈nϵ⌉ are arbitrarily chosen by the adversary.
The adversary is supposed to have full knowledge of p, of the data X1, . . . ,Xn and of the
estimator.

We do not provide an overview of the very rich literature on robust estimation, but we refer the
reader to [186], [187], [181], [180] where one can find a good introduction to the subject. The
field of robust statistics has been pioneered in the sixties by [2], [3], [8]. It mainly encompasses
two different approaches, namely robustness to contamination - which we focus on in this thesis
- and robustness to heavy tails, which we now only briefly review. Heavy tailed distributions are
distributions for which extremely large values can be observed with a substantial probability. One
emblematic problem is the mean estimation problem with heavy tails. The breakthrough paper [58]
revolutionized our understanding of this problem, by proposing an estimator of the mean with a
sub-Gaussian rate, while merely assuming that the distribution has a second order moment. These
results were then extended to high dimensions in [114] with an exponential-time procedure, and
further improved by [136, 108], which proposed polynomial-time procedures with comparable sta-
tistical property. Further references and techniques concerning robustness to heavy tails can be
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found in [113].

In this thesis, we place ourselves in the adversarial setting and consider robust estimation of high-
dimensional discrete distributions, under the additional learning constraint of local differential
privacy (see Section 1.3.1). Without the privacy constraint, several works considered the problem
of robustly learning discrete distributions under adversarial contamination, for example [93], [130],
[137], [131], [138], [123]. The paper [161] extended the results to densities.

Discrete distributions being instances of sub-Gaussian distributions, it is beneficial to recall the clas-
sical estimation rates for learning high-dimensional normal distributions under adversarial contam-
ination. Let X1, . . . ,Xn

iid∼ N (µ, Σ) where µ ∈ Rd and Σ ∈ Rd×d is a known positive semi-definite
and symmetric matrix. Assume that an adversary knowing the data, the underlying distribution as
well as the statistician’s estimator can replace ⌈ϵn⌉ of the data-points with ⌈ϵn⌉ outliers for some
ϵ ∈ (0, 1

2 ). Nothing is assumed on the outliers, in particular, they need not follow a probability dis-
tribution and can be chosen arbitrarily far away from µ. We consider the problem of estimating µ
in the L2 norm in this setting. From the theory developed in [80, 101, 123] the minimax estimation
rate, up to absolute constant factors, is lower bounded by the the risk in the Huber contamination
model, scaling as as √

Tr(Σ)
n

+ ϵ
√
∥Σ∥op, (1.12)

where ∥ · ∥op denotes the operator norm. Among all tractable methods, the best rate achieved so
far in the adversarial setting, up to absolute constant factors, is as follows (see [171])√

Tr(Σ)
n

+ ϵ

√
log

(1
ϵ

)√
∥Σ∥op. (1.13)

It has been highlighted that polynomial-time estimators can have worse statistical guarantees than
computationally intractable ones [84, 60, 61]. In the present setting, it is conjectured that the extra
factor

√
log

(
1
ϵ

)
represents a computational gap between polynomial-time methods and computa-

tionally intractable ones, see e.g. [89].

1.3.3 Combining robustness with privacy

Although robust learning and local differential privacy are both widely studied fields of research,
combining the two settings is just starting to be explored. The links between robustness and global
differential privacy have been well studied in [120, 115, 112]. However, in the case of local differ-
ential privacy, only recent works have considered this interaction: [157, 176], where the authors
provide upper and lower bounds for estimating discrete distributions under the two constraints,
in a different setting from what we consider. The lower bound was later tightened in [149]. The
paper [163] also considers the mean estimation problem under local differential privacy and robust-
ness to outliers.
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The above papers consider adversarial contamination as well as Huber contamination. It is impor-
tant to note that when combining robustness with privacy, the contamination can essentially occur
at two different steps.

• Contamination before privacy: The adversary can play before privacy and replace some
of the non-privatized data with outliers. Then, the privacy channel Q is applied on this
corrupted dataset.

• Contamination after privacy: The adversary can also play at the second step, after
privatization, by replacing some of the privatized data-points with outliers.

In this thesis, we consider the second setting. These two configurations may seem very similar and
one could expect them to lead to comparable statistical rates. However, it is not the case, and the
two settings actually involve quite different phenomena. Denote by R∗

privacy the minimax estimation
rate under privacy alone and by R∗

contam the minimax estimation rate under contamination alone.
In each of the above papers [157, 176, 149], whenever contamination occurs before privacy, the
minimax rate always scales as R∗

privacy +R∗
contam (in other words, there is no extra statistical cost

due to the interaction of the two constraints). When contamination comes after privacy, however,
the minimax risk scales as R∗

privacy +
√
d
α R

∗
contam, which is always at least as large as the previous

rate. This latter rate reveals an interesting interplay between the two constraints. To the best of
our knowledge, there is no unifying result generalizing this phenomenon to an arbitrary setting,
which can be a very interesting direction for future work.

1.4 Benign overfitting
Benign overfitting is a counter-intuitive phenomenon that was recently discovered in the deep
learning community. It has been experimentally observed that deep neural network can achieve
very good generalization performance while perfectly fitting noisy training data [167, 105, 154].
This phenomenon seems to go against the classical bias–variance trade-off argument which assumes
a necessary balance between overfitting and underfitting. When plotting the test error of a neural
net as a function of the number of its parameters, the paper [105] was the first to experimentally
exhibit the so-called “double descent risk curve”, that reconciles the U-shaped curve predicted by
the bias–variance trade-off with the observation that good prediction accuracy is achievable with
overfitting. With the aim of understanding this phenomenon, a series of papers studied benign
overfitting in the linear regression model, which is perhaps the simplest case where this phenomenon
can occur (see [122], [146], [133], [144], [152], [175] and the references therein). We refer the reader
to [153] for an excellent review of the recent field. In this thesis, we only study benign overfitting
in the context of nonparametric regression. However, we give here a quick overview of benign
overfitting in some other related settings.

1.4.1 Ridge (and ridgeless) regression

In the linear regression model, there exists a deep connection between interpolation and ridgeless
regression. Consider the linear regression model

y = Xθ∗ + ξ. (1.14)
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Here, y = (Y1, . . . ,Yn)⊤ ∈ Rn, X = (X1, . . . ,Xn)⊤ ∈ Rn×d, and ξ ∈ Rn. For some λ > 0, the
ridge regression estimator is defined as the unique vector θ̂R minimizing 1

n∥Xθ− y∥
2 + λ∥θ∥2. This

program is equivalent to minimizing ∥Xθ − y∥2 subject to ∥θ∥ ≤ b or to minimizing ∥θ∥ subject
to 1

n∥Xθ − y∥
2 ≤ c, for some constants b, c. We note that, in the last program, taking λ → 0 is

equivalent to taking c→ 0, so that the minimum-norm interpolating estimator θ̂ = arg minθ∈Rd ∥θ∥
subject to ∥Xθ− y∥ = 0 is the limiting ridge estimator as λ→ 0, also called the ridgeless estimator
(note that this problem has a solution in the overparametrized regime where d > n). In most cases,
studying benign overfitting in the linear regression setting makes extensive use of this estimator.

Linear case with Gaussian covariates

Assume that (y, X) are jointly Gaussian. We assume that EX = 0 and that 1
nEXX⊤ = Σ ∈ Rd×d

where d ∈ N∗. In the asymptotic case where d
n → γ > 0, the (weighted) ridgeless estimator was

studied in [172], [165], [147] for a general known covariance matrix Σ.

In the non-asymptotic case, the paper [122] gives necessary and sufficient conditions on the co-
variance matrix Σ for benign overfitting to occur, that is, for the ridgeless estimator to be near
minimax optimal. The authors show that overparametrization is necessary as well as very specific
conditions over the decay of the eigenvalues of Σ. In [146], the authors precisely studied the ridge
regression estimator in the overparametrized setting, and established non-asymptotic generaliza-
tion bounds in the case of a general known covariance matrix Σ, and showed that those bounds
are tight for a range of regularization parameter values. These results were then refined in [175].
In the linear model, the main conclusion is that the benign overfitting phenomenon requires over-
parametrization, which in a sense approaches the non-parametric setting, as well as an unbalanced
spectrum of the design matrix with a specific decay of its eigenvalues.

1.4.2 Kernel ridge(less) regression

Extensions to kernel ridgeless regression in RKHS were considered in [142] when the sample size n
and the dimension d were assumed to satisfy n ≍ d, and in [143] for a more general case d ≍ nα for
α ∈ (0, 1). These papers give data-dependent upper bounds on the risk that can be small assuming
favorable spectral properties of the data and the kernel matrix. On the other hand, if d is constant
(independent of n) then the least-norm interpolating estimator with respect to the Laplace kernel
is inconsistent [116]. Kernel ridge regression is one of the usual statistical techniques for estimating
functions. This setting is therefore closely related to the setting of non-parametric regression, which
is addressed in this thesis.

1.4.3 Non-parametric regression

In the setting of non-parametric regression, one is given n i.i.d. observations (Xi,Yi) ∈ Rd ×R

for i = 1, . . . ,n, where Yi = f(Xi) + ϵi. Here, the ϵi’s are i.i.d. noise random variables that are
independent from Xi, and f is an unknown function that we want to estimate. We assume that f
belongs to the Hölder class of functions. In the setting of non-parametric regression with square
loss and known Hölder smoothness β ≤ 2, it was shown that there exist interpolating estimators
attaining minimax optimal rates [106]. Namely, it is proved in [106] that interpolation with minimax
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optimal rates on such Hölder classes can be achieved by Nadaraya-Watson estimator with a singular
kernel.

1.5 Summary of the contributions

1.5.1 Chapter 2: Local Goodness-of-fit testing in discrete models

This Chapter is based on the paper: “Sharp Local Minimax Rates for Goodness-of-Fit Testing
in multivariate Binomial and Poisson families and in multinomials” [132], by Julien Chhor and
Alexandra Carpentier (arXiv:2012.13766), to appear in Mathematical Statistics and Learning.

We consider the local goodness-of-fit testing problem for discrete distributions such as multivariate
Binomial or Poisson families and multinomial distributions. For fixed null discrete distribution p0,
we derive the nonasymptotic local minimax separation radius ρ∗(n, p0, t) up to constants depending
only on η, for all ℓt separation distances with t ∈ [1, 2]. Furthermore, we establish the tight
dependency of ρ∗ on p0. We also give the corresponding local minimax tests. The main idea is to
introduce a new way of splitting the null distribution p0 into bulk and tail parts, and to accurately
determine the contribution of the tail. Our approach provides understanding of how very small
coefficients of p0 contribute to the minimax separation radius local testing problems for a variety
of separation distances.

1.5.2 Chapter 3: Local Goodness-of-fit testing for Hölder continuous densities

This Chapter is based on the paper “Goodness-of-Fit Testing for Hölder-Continuous Densities:
Sharp Local Minimax Rates” [158] by Julien Chhor and Alexandra Carpentier (arXiv:2109.04346).

In the continuous setting, we assume that the observations are i.i.d. with the same unknown
density p having α-Hölder smoothness over Rd, for α > 0. The null density p0 is assumed to
satisfy the same smoothness conditions. We address the local testing problem in all Lt separation
distances, t ∈ [1, 2], and for all smoothness parameter α > 0. We establish nonasymptotic upper and
lower bounds on the minimax separation radius ρ∗(n, p0, t), and prove that the bounds are always
matching. We also explicitly construct local minimax tests by introducing novel test statistics which
we believe could be of independent interest. For α > 1, we need an additional technical assumption
on the densities which we believe is quite mild. We also introduce a new way of splitting the domain
Rd into bulk and tail parts. Our analysis of the tail part reveals how very small values of the null
density contribute to the minimax separation radius, which, to the best of our knowledge, was not
understood in the literature.

1.5.3 Chapter 4: Robust estimation of discrete distributions under local differ-
ential privacy

This Chapter is based on the paper “Robust Estimation of Discrete Distributions under Local Dif-
ferential Privacy” [169], by Julien Chhor and Flore Sentenac (arXiv:2202.06825).
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We consider the problem of estimating a d dimensional discrete distribution p under the constraints
of local differential privacy and robustness to adversarial contamination. We assume that the non
corrupted and non-privatized data are i.i.d. with distribution p, and are grouped in n batches of
size k ≥ 1. Moreover, we assume that each one of these nk datapoints is privatized using an α-LDP
mechanism for α ∈ (0, 1). We further assume that an adversary replaces ⌈ϵn⌉ of the privatized
batches with arbitrarily chosen batches. When k = 1, this setting encompasses the classical setting
where the dataset consists of n non-corrupted datapoints, that an adversary can contaminate by
replacing ⌈ϵn⌉ of the data points with outliers.

We propose a polynomial-time algorithm and prove that with high probability, it estimates p with
the rate 1 ∧

{
d

α
√
nk

+ ϵ
√
d

α
√
k

√
log(1/ϵ)

}
in total variation distance. We show that this rate is tight

up to the extra
√

log(1/ϵ) factor, i.e. we prove that for any estimator p̂, there exists a distribution

p such that with constant probability, we have TV (p̂, p) ≥ c
(

1∧
{

d
α

√
nk

+ ϵ
√
d

α
√
k

})
for some c > 0.

Up to constants, this rate can be strictly larger than the sum of the estimation rate under privacy
only, which is d

α
√
nk

, and of the contamination rate only, which is
√

d
nk +

ϵ√
k
. More precisely, our

results show that the contamination term gets inflated by a factor
√
d
α .

1.5.4 Chapter 5: Benign overfitting in adaptive non-parametric regression

This chapter is based on the paper “Benign Overfitting and Adaptive Nonparametric Regres-
sion” [170] with Suzanne Sigalla and Alexandre Tsybakov (arXiv:2206.13347).

We consider the setting of non-parametric regression with squared L2 loss. We assume that the
observations consist of n i.i.d.pairs (Xi,Yi) such that Yi = f(Xi) + ξi where f belongs to a subset
of the Hölder class Σ(β,L) for unknown β ∈ (0,βmax] and ξi are i.i.d. σξ-sub-Gaussian noise. We
use local polynomial estimators with singular kernels to construct a minimax optimal estimator f̂
that is a continuous function, which is adaptive to unknown β ∈ [0,βmax] and that interpolates all
of the data points with high probability, i.e. such that f̂(Xi) = Yi for all i = 1, . . . ,n.
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Introduction en Français

Cette thèse explore différents sujets d’inférence statistique parmi lesquels les tests minimax, l’estimation
sous contraintes et l’overfitting bénin dans la régression non-paramétrique.

• La première partie est consacrée aux tests minimax. Étant donné n observations i.i.d. de loi
p inconnue, le problème de test d’adéquation vise à tester l’égalité de p à une distribution
de probabilité donnée p0 contre une alternative composée de distributions séparées de p0 au
sens d’une certaine distance sur la classe de distributions considérée. Nous étudions deux
problèmes différents. Le premier concerne le cas discret, où les observations peuvent être
des familles multivariées binomiales ou de Poisson ou des distributions multinomiales. La
seconde est une extension de la première au cas continu, où les observations sont i.i.d. avec
une certaine densité de probabilité sur Rd qui appartient à la classe de Hölder de fonction
avec des paramètres connus α,L > 0. Dans les deux cas, nous nous intéressons spécifiquement
à la version locale du problème (voir section 1.6.3)

• La deuxième partie propose un problème d’estimation sous contrainte. Nous étudions les in-
teractions entre la robustesse à la contamination adversariale et la confidentialité différentielle
locale pour l’estimation de distributions discrètes.

• La troisième partie porte sur la régression non-paramétrique. Nous construisons un estimateur
par polynômes locaux, à la fois optimal au sens minimax, adaptatif à la régularité inconnue
de la fonction à estimer, et présentant la propriété d’interpoler continûment tous les points
de données avec grande probabilité - un phénomène appelé "overfitting bénin".

Les notations peuvent changer d’un chapitre à l’autre.

1.6 Tests Minimax
Soit X un ensemble et P =

{
Pθ | θ ∈ Θ

}
une famille de lois de probabilité sur un espace measurable

(X ,U), où Θ est un ensemble de paramètres, de dimension éventuellement infinie. Soient Θ0 et
Θ1 ⊂ Θ deux sous ensembles disjoints de Θ : Θ0 ∩ Θ1 = ∅. On suppose que l’on dispose de
n ∈ N∗ observations X1, · · · ,Xn

iid∼ Pθ pour un certain θ ∈ Θ inconnu. Au vu des observations
X1, · · · ,Xn, on souhaite effectuer le problème de test suivant :

H0 : θ ∈ Θ0 contre H1 : θ ∈ Θ1. (1.15)
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Définition: Un test ψ est une fonction mesurable des données, prenant seulement les valeurs 0
et 1.

ψ : X n −→ {0, 1}.

Dans cette thèse, nous nous intéressons à la notion d’optimalité minimax. L’erreur de type I
d’un test ψ est définie comme max

θ∈Θ0
Pθ(ψ = 1) et l’erreur de type II comme max

θ∈Θ1
Pθ(ψ = 0). On

mesure la qualité d’un test par son risque, défini comme la somme de ses erreurs de type I et de
type II : RΘ0,Θ1(ψ) = sup

θ∈Θ0

Pθ (ψ = 1) + sup
θ∈Θ1

Pθ (ψ = 0). Dans ce paradigme, H0 et H1 sont donc

symétriques et le problème consiste à construire des tests ayant simultanément de faibles erreurs de
type I et II dans le pire des cas. Comme nous le verrons plus tard, ce paradigme garantit toujours
l’existence de tests optimaux dans un sens défini ci-dessous.

Le risque minimax est défini comme le risque du meilleur test, s’il existe.

Definition 1.4. (Risque minimax): Le risque minimax associé au problème (1.15) est défini comme

R∗
Θ0,Θ1 = inf

ψ
RΘ0,Θ1(ψ)

= inf
ψ

{
sup
θ∈Θ0

Pθ (ψ = 1) + sup
θ∈Θ1

Pθ (ψ = 0)
}

,

où l’infimum est pris sur tous les tests ψ : X n −→ {0, 1}.

Une première remarque est que si Θ0, Θ1 ⊆ Θ sont tels que R∗
Θ0,Θ1

= 1, alors la stratégie de
décision optimale est de répondre au hasard. En effet, appelons ∆̃ le test randomisé, qui prend les
valeurs 0 et 1 avec équiprobabilité de manière indépendante des données. Son risque est égal à 1 :
en effet, ∀θ ∈ Θ0, Pθ(∆̃ = 1) = 1

2 et ∀θ ∈ Θ1, Pθ(∆̃ = 0) = 1
2 , d’où

RΘ0,Θ1(∆̃) = sup
θ∈Θ0

Pθ

(
∆̃ = 1

)
+ sup

θ∈Θ1

Pθ

(
∆̃ = 0

)
=

1
2 +

1
2 = 1.

Si R∗
Θ0,Θ1

= 1, le test ∆̃ est optimal et le problème est trivial. Il est donc naturel de ne considérer
que des problèmes de test avec R∗

Θ0,Θ1
< 1. On supposera donc désormais que R∗

Θ0,Θ1
≤ η où

η ∈ (0, 1) est un niveau de risque choisi à l’avance.

1.6.1 Problème du Goodness-of-Fit

Soit dist une distance sur Θ et fixons η ∈ (0, 1) ainsi que θ0 ∈ Θ. Supposons que la distance de
variation totale soit continue par rapport à dist. Pour ρ > 0, le problème de test de Goodness-
of-fit, également appelé problème de test d’identité, s’écrit comme suit :

H0 : θ = θ0 contre H
(ρ)
1 :

θ ∈ Θ,
dist(θ, θ0) ≥ ρ.

(⋆)
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On pourrait se demander pourquoi on ne définit pas le problème de la manière suivante

H ′
0 : θ = θ0 contre H ′

1 :

θ ∈ Θ,
θ ̸= θ0.

(1.16)

La raison est la suivante: désignons par R∗ le risque minimax du problème (1.16). Dans ce cas,
pour tout θ1 ̸= θ0, nous aurions

1 ≥ inf
ψ

{
Pθ0(ψ = 1) + Pθ1(ψ = 0)

}
= 1 + inf

ψ

{
Pθ1(ψ = 0)−Pθ0(ψ = 0)

}
= 1− sup

U∈U
Pθ1(U)−Pθ0(U)

= 1− sup
U∈U

∣∣Pθ1(U)−Pθ0(U)
∣∣

= 1− TV (Pθ0 , Pθ1) −→ 1 lorsque dist(θ1, θ0)→ 0,

puisque la distance de variation totale est continue par rapport à dist. Le problème de test (1.16)
est donc associé à un risque minimax R∗ = 1, autrement dit, il serait optimal de répondre au
hasard. Pour s’assurer que le risque minimax est inférieur à η ∈ (0, 1), il est donc nécessaire de
définir le problème de Goodness-of-Fit comme dans l’équation (⋆) dans le cadre minimax. Plus
précisément, introduisons la notation

R∗(ρ) = inf
ψ

Pθ0(ψ = 1) + sup
{

Pθ(ψ = 0)
∣∣∣ θ : dist(θ, θ0) ≥ ρ

}
, (1.17)

pour désigner le risque minimal associé au problème (⋆). En notant que ρ 7→ R∗(ρ) est une fonction
décroissante, on cherche à trouver la plus petite distance de séparation ρ > 0 assurant R∗(ρ) ≤ η.

Definition 1.5 (Minimax separation radius). Le rayon de séparation minimax du problème (⋆) est
défini comme

ρ∗(n, θ0, Θ, dist, η) = inf
{
ρ > 0

∣∣∣ R∗(ρ) ≤ η
}

.

De plus, nous désignerons le risque de tout test ψ par la quantité

R(ρ,ψ) := Pθ0(ψ = 1) + sup
{

Pθ(ψ = 0)
∣∣∣ θ : dist(θ, θ0) ≥ ρ

}
.

L’objectif du problème de test de Goodness-of-Fit est double :

1. Identifier ρ∗ à constantes multiplicatives près.

2. Trouver un test ψ∗ et une constante C > 0 tels que R(Cρ∗,ψ) ≤ η. Un tel test est appelé un
test minimax-optimal.

Remarque: Dans la littérature, le problème de Goodness-of-Fit est parfois formulé d’une manière
différente. Dans la définition ci-dessus, nous nous sommes intéressés au rayon de séparation minimax
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pour un nombre fixé de données n. Cependant, le problème du test d’identité peut également être
formulé en termes de sample complexity. En d’autres termes, pour une précision fixée ϵ > 0,
on s’itéresse dans ce cas à déterminer le nombre d’observations n∗ nécessaire et suffisant, à une
constante multiplicative près dépendant uniquement de η, dist, Θ, pour que le problème de test

H0 : θ = θ0 contre H1(ϵ) :

θ ∈ Θ,
dist(θ, θ0) ≥ ϵ,

ait un risque minimax au plus égal à η. Cette formulation est une version duale du problème de
Goodness-of-Fit (⋆) et conduit souvent à des résultats très similaires. Cette convention est la plus
souvent utilisée dans la communauté computer science (voir par exemple [71, 95, 81, 100, 67]), alors
que la forumlation (⋆) est standard dans la communauté statistique.

1.6.2 Vitesses classiques pour la détection de signal

Dans le cadre minimax, le problème de détection de signal correspond au cas particulier où
Θ0 = {0}. L’un des premiers articles traitant du problème de détection du signal est [13] dans
le modèle de bruit blanc gaussien. La série d’articles [22] est considérée comme une référence dans
le domaine de la détection de signal non paramétrique. Le cas où Θ est un ellipsoïde est considéré
dans [20], ou par des boules de Sobolev ou de Besov dans [26], [182], [31] pour ne citer que quelques
exemples. Notons que les références ci-dessus traitent du régime asymptotique. Dans cette thèse,
cependant, nous nous concentrerons sur les vitesses non asymptotiques, qui est un cadre moins
standard dans la littérature (voir par exemple [36], [59], [87], [162], [44], [174], [51]). Nous ne
donnons pas ici un aperçu exhaustif de la littérature et référons le lecteur à [183] pour un excellent
aperçu. Nous nous limiterons à passer en revue les résultats classiques qu’il est utile de comparer
avec les résultats développés dans la thèse.

Cas gaussien

Le premier cadre classique de détection de signal est le problème de test de Goodness-of-Fit dans
le cadre gaussien. Pour d ≥ 1, supposons que l’on observe X1, . . . ,Xn

iid∼ N (θ, Id) où Id désigne la
matrice identité de taille d. On considère le problème de test

H0 : θ = 0 contre H1(ρ) :

θ ∈ Θ,
∥θ∥2 ≥ ρ,

(1.18)

où ρ > 0 et ∥ · ∥2 désigne la norme euclidienne. Le rayon minimax de séparation pour le prob-
lème (1.18) est ρ∗ ≍ d

1
4 /
√
n (c.f. [162], [87]) et le test minimax optimal est 1

{
∥X̄n∥22 ≥ d+ c

}
où

c > 0 est une constante et X̄n = 1
n

∑n
i=1Xi. Il s’ensuit que, pour toute précision ϵ > 0, tester

l’égalité à 0 par rapport à l’alternative ∥θ∥22 ≥ ϵ2 n’est possible que si n ≳
√
d
ϵ2 .

Nous pouvons comparer ceci avec la vitesse classique d’estimation. Si, au vu de l’observation X ∼
N (θ, Id), on cherche à estimer θ en perte L2, l’estimateur optimal minimax de θ sur Rd est θ̂ = X,
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et il atteint la vitesse supθ∈Rd E∥θ̂− θ∥2 = d. En d’autres termes, au vu de X1, . . . ,Xn
iid∼ N (θ, Id),

construire un estimateur θ̂ de θ avec une précision d’estimation de supθ∈Rd E∥θ̂ − θ∥2 = ϵ2 n’est
possible que si n ≥ d

ϵ2 .

Un phénomène intéressant se produit donc lorsque
√
d
n ≲ ∥θ∥22 ≪ d

n . En effet, il est d’une part
possible de détecter que θ ̸= 0, tandis qu’il est d’autre part impossible d’améliorer l’estimateur
trivial égal à 0. Il s’agit de l’un des avantages des tests par rapport à l’estimation : bien que les
tests ne fournissent qu’une information binaire (donc plus limitée que ce que l’estimation permet
d’obtenir), ils permettent d’atteindre des vitesses plus rapides. Cet avantage devient d’autant plus
important en grande dimension qu’il permet de restreindre la quantité de données nécessaires pour
faire de l’inférence.

Cadre non-paramétrique

Le problème de test non paramétrique le plus proche de nos résultats consiste à tester l’égalité
d’une distribution inconnue à la distribution uniforme sur [0, 1]d contre une alternative composée
de densités hölderiennes sur [0, 1]d et séparées en distance L2 [179]. Plus précisément, en définissant
p0 = 1 comme la densité uniforme sur [0, 1]d et étant donné n observations i.i.d. X1, . . . ,Xn avec une
densité hölderienne p sur [0, 1]d et un paramètre de régularité connu α > 0, le problème considéré
s’écrit

H0 : p = p0 contre H1(ρ) :

∥p− p0∥2 ≥ ρ
p ∈ H(α),

(1.19)

où H(α) est la classe des fonctions hölderiennes sur [0, 1]d de paramètre de régularité α et constante
de Lipschitz normalisée à 1. On montre que la vitesse asymptotique minimax lorsque n → ∞ est
ρ∗ ≍ n− 2α

4α+d (voir par exemple [22]). Encore une fois, on peut comparer cette vitesse avec la vitesse
minimax d’estimation d’une densité hölderienne dans H(α) qui est n− α

2α+d (voir [188]), toujours
plus lente que la vitesse non-paramétrique de test.

1.6.3 Tests locaux

Dans cette sous-section, nous introduisons une distinction supplémentaire en tests locaux et globaux.
Supposons que Θ, dist et η sont fixés. Le problème de test local s’intéresse à la dépendance précise
de ρ∗ par rapport à θ0 et n. Au contraire, le problème de test global vise à étudier le rayon de
séparation ρ∗(n, θ0) dans le pire cas lorsque θ0 varie dans la classe Θ : ρ∗

global(n) := sup
θ0∈Θ

ρ∗
local(n, θ0).

Les vitesses locales apparaissent naturellement lorsque la variance des observations dépend du
paramètre θ que l’on veut tester. Par exemple, supposons que l’on observe X ∼ N (θ, Id) et que
l’on fixe θ0 ∈ Rd. Considérons le problème de test gaussien suivant

H0 : θ = θ0 contre H1 :

θ ∈ Θ,
∥θ− θ0∥2 ≥ ρ.
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Dans ce problème de test, les rayons minimax de séparation locaux ne diffèrent pas des rayons
globaux, car la matrice de covariance des données reste égale à Id indépendamment de θ0. Supposons
maintenant que l’on dispose de X1, . . . ,Xn

iid∼ Ber(p) où p ∈ [0, 1] et fixons p0 ∈ [0, 1]. On
s’intéresse au problème suivant

H0 : p = p0 contre H1(ρ) :

p ∈ [0, 1],
|p− p0| ≥ ρ.

Une statistique exhaustive est la somme∑n
i=1Xi, dont la variance

√
np(1− p) dépend du paramètre

p à tester. Dans ce cadre, ρ∗(n, p0) présente des comportements très différents du rayon de sépa-
ration global lorsque p0 varie dans [0, 1]. En effet, pour p0 = 0, on a ρ∗(n, 0) ≍ 1/n, tandis que
pour p0 = 1

2 , on a ρ∗(n, 1
2 ) ≍ 1/

√
n (ces affirmations découlent du Théorème 2.1 prouvé dans

cette thèse). Dans ce cadre très simple, les vitesses locales peuvent considérablement raffiner les
vitesses globales, ce qui, en grande dimension, peut s’avérer d’un grand intérêt. Dans cette thèse,
une attention particulière se portera sur la construction tests locaux et non globaux, et nous nous
attacherons à prouver leur optimalité.

1.7 Inférence sous contrainte
Dans la deuxième partie de la thèse (chapitre 4), nous nous intéressons à l’estimation de distri-
butions discrètes sous contraintes de learning. Le but de ce chapitre est d’étudier les intéractions
entre la contrainte de confidentialité locale différentielle et la contrainte de robustesse aux outliers.

1.7.1 Confidentialité locale différentielle

De nouveaux défis ont récemment vu le jour concernant le traitement des données. L’un d’entre
eux provient du caractère sensible des données collectées à grande échelle sur internet ou sur nos
comportements d’achat. De manière générale, bien que le traitement de ces données puisse être un
enjeu important, il devient primordial d’assurer la confidentialité des informations traitées par le
statisticien. Pour répondre à ce problème, plusieurs solutions ont été envisagées.

• Anonymiser les données: Bien que naturelle, cette méthode peut s’avérer très vulnérable. Il
a été montré expérimentalement dans [34] que 87% de la population des Etats-Unis pouvait
être indirectement identifiée à partir des informations suivantes: {date de naissance, genre,
code postal}.

• Cryptographie: Une autre solution naturelle est de crypter les données pour les rendre in-
déchiffrables, par exemple à l’aide de méthodes comme le chiffrement homomorphe ou le
Secure multiparty computation. Cependant, cette méthode présente également des défauts :
le coût en temps de calcul est élevé, ce type de procédure peut ne pas être robuste au sens
statistique du terme, et les données peuvent être reconstituées si un attaquant parvient à
accéder à la clé de chiffrement.

• Confidentialité différentielle: Cette technique consiste à modifier les données, souvent en leur
ajoutant un bruit. Le bruit choisi doit être suffisamment fort pour qu’il soit impossible de
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reconstituer les données initiales à partir de leur version bruitée. Il doit également être suff-
isamment faible pour que, si suffisamment d’individus sont observés, il soit possible d’inférer
des caractéristiques globales de la population. Le statisticien n’a jamais accès aux données
non-buitées ; en revanche, il est libre de choisir le mécanisme de privatisation des données
qui convient le mieux au problème statistique considéré. Contrairement aux méthodes cryp-
tographiques, cette technique garantit donc l’impossibilité de reconstituer des informations
sensibles, même en cas d’attaque. Bien que l’utilisation de cette technique conduise souvent
à des méthodes calculables en temps raisonnable, leur coût statistique peut être prohibitif,
comme nous le verrons par la suite. Il est donc de primordial de comprendre dans quelles
conditions la confidentialité différentielle peut être utilisée efficacement, ce qui constitue l’un
des thèmes abordés dans cette thèse.

Dans cette thèse, nous nous intéressons à l’estimation de distributions discrètes sous contrainte
de confidentialité locale différentielle. Soit X = (X1, . . . ,Xn) un vecteur aléatoire dans l’espace
mesurable (X n,An, Pn). On souhaite produire une nouvelle variable aléatoire Z, appelée version
privatisée de X. Formellement, Z prend ses valeurs sur un second espace mesurable (Z,B) et
est générée selon le mécanisme Z|X = x ∼ Q(·|x) où Q(· |·) est un noyau de Markov également
appelé Mécanisme de confidentialité. En d’autres termes, pour tout x ∈ X n, nous supposons que
Q(·|x) est une distribution de probabilité, et pour tout A ∈ An, Q(A|·) est une fonction mesurable.
Soit α ∈ (0, 1). Il existe deux approches principales pour définir la contrainte de confidentialité
locale différentielle.

1. Confidentialité différentielle centrale (ou globale): On dit qu’un mécanisme de con-
fidentialité Q vérifie la condition globale de confidentialité différentielle [46, 43] si pour tout
A ∈ B et pour tout x,x′ ∈ X n tel que ∑n

i=1 1{xi ̸=x′
i} = 1, on a

Q(A|x)
Q(A|x′)

≤ eα.

Le statisticien n’accède jamais à (X1, . . . ,Xn), mais seulement à Z. Cependant, cette ap-
proche nécessite malheureusement qu’une unité centrale ait accès à l’ensemble des données
(X1, . . . Xn) afin de produire Z. Si l’unité centrale est piratée, l’ensemble des données sensibles
(X1, . . . ,Xn) peut être révélé, ce qui rend cette méthode relativement vulnérable.

2. Local differential privacy: Une solution à ce problème est d’introduire un deuxième for-
malisme comme proposé dans [54]. L’idée est de produire les données privatisées au moment-
même où elles sont collectées: chaque utilisateur envoie au statisticien la valeur privatisée
Zi ∼ Q(·|Xi) sans jamais révéler la véritable valeur Xi. Formellement, un mécanisme de con-
fidentialité Q satisfaisant Q(dz|x) = Q(dz1|x1)Q(dz2|x2, z1) . . . Q(dzn|xn, z1, . . . , zn−1) est
dit être localement différentiellement privé si pour tout A ∈ B, pour tout i ∈ [n], pour tout
z1, . . . zi−1 ∈ Zi−1, pour tout x,x′ ∈ X :

Q(A|x, z1, . . . , zi−1)

Q(A|x′, z1, . . . , zi−1)
≤ eα. (1.20)
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Cette méthode ne nécessite pas l’existence d’une unité centrale car chaque donnée privatisée Zi
est produite uniquement à l’aide de Xi et de toutes les données déjà accessibles publiquement
Z1, . . . ,Zi−1. Un mécanisme de confidentialité satisfaisant (1.20) est appelé mécanisme interactif.
Une classe plus restreinte de mécanismes de confidentialité peut être définie comme suit. Un
mécanisme de confidentialité Q est dit non-interactif si Q(dz|x) =

∏n
i=1Qi(dzi|xi) où chaque

noyau de Markov Qi vérifie
Qi(A|x)
Qi(A|x′)

≤ eα, ∀x,x′ ∈ X . (1.21)

Ce type de mécanisme permet de collecter les données indépendamment les unes des autres. A
l’inverse, les mécanismes interactifs généraux définis comme dans (1.20) nécessitent que les don-
nées soient collectées de manière séquentielle. Il s’agit d’un inconvénient majeur des mécanismes
interactifs. En contrepartie, ces derniers peuvent dans certains cas atteindre de meilleures vitesses
statistiques que les mécanismes non-interactifs [126, 124] et doivent par conséquent être privilégiés
dès que possible.

En effet, la confidentialité différentielle locale s’accompagne d’un coût statistique élevé. Elle né-
cessite que la quasi-totalité de l’information contenue dans X1, . . . ,Xn soit perdue pour produire
Z1, . . . ,Zn. Il a été observé dans [62] que pour les lois discrètes, la précision optimale d’estimation
atteignable avec n observations sous contrainte de α-local differential privacy est la même que celle
atteignable avec nα2/d observations sans local differential privacy. L’effet de la confidentialité re-
vient donc à réduire le nombre d’observations d’un facteur α2/d, ce qui, en dimension élevée, peut
s’avérer prohibitif.

1.7.2 Robustesse

L’une des approches les plus classiques en statistiques est de faire l’hypothèse que les données sont
indépendantes et identiquement distribuées. Cependant, cette hypothèse n’a pas nécessairement
de raison d’être vérifiée en pratique. Par exemple, de très grands ensembles de données sont sus-
ceptibles de contenir de observations provenant de distributions différentes. Pour assouplir cette
condition, un point de vue classique est de supposer que seulement une partie des données, ap-
pelées inliers, provient d’une distribution d’intérêt. Le reste des données, désignées par le terme
ouliers, est supposé ne pas provenir de cette distribution cible. Dans ce cas, on dit que le jeu de
données est contaminé. De manière informelle, le but de l’apprentissage robuste est de construire
des estimateurs dont les performances soient affectées par la contamination aussi peu que possi-
ble. Naturellement, les outliers dégradent souvent les performances statistiques. Le papier [123]
répertorie différents modèles de contamination couramment étudiés.

1. Contamination de Huber [21], [5]: Il s’agit de l’un des modèles les plus étudiés. Il
suppose l’existence de deux distributions p et q ainsi qu’un taux de contamination ϵ ∈ (0, 1

2 )

tels que X1 . . . ,Xn
iid∼ (1− ϵ)p+ ϵq. Dans ce modèle, p est la distribution cible inconnue, et

q représente la contamination. Le nombre d’outliers est aléatoire et suit la loi Bin(n, ϵ).

2. Contamination déterministe de Huber: On dit qu’une distribution suit le modèle de
contamination déterministe de Huber s’il existe un ensemble O ⊂ [n] de cardinal au plus ⌈nϵ⌉
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et deux distributions p, q telles que pour tout i /∈ O, Xi ∼ p et pour tout i ∈ O, Xi ∼ q et
toutes les observations X1, . . . ,Xn sont mutuellement indépendantes.

3. Olivious Contamination: Ce modèle est similaire à la contamination déterministe de Hu-
ber, à ceci près que la famille d’outliers suit une certaine distribution conjointe QO. Par
conséquent, les outliers ne sont pas supposés être i.i.d..

4. Contamination des paramètres: Pour un ensemble d’outliers O choisi à l’avance, les
outliers Xi, i ∈ O sont indépendants des inliers Xi, i /∈ O, et chaque outlier Xi, i ∈ O est
distribué selon qi, appartenant à la même classe que p.

5. Contamination adversariale: Avec le modèle de contamination de Huber, il s’agit de
l’un des modèles de contamination les plus populaires. Il s’agit également du modèle le
plus général. Dans ce modèle, les données i.i.d. propres X1, . . . Xn sont générées à partir
d’une distribution p. Pour un certain ϵ ∈ (0, 1), un adversaire remplace ⌈nϵ⌉ des données
par de nouvelles données qui peuvent être déterministes ou aléatoires, et pouvant dépendre
arbitrairement des inliers. Une autre approche populaire consiste à supposer que n− ⌈nϵ⌉
points de données sont tirés de manière i.i.d. avec distribution p et que les ⌈nϵ⌉ restants
sont choisis arbitrairement par l’adversaire. L’adversaire est supposé avoir une connaissance
parfaite de p, des données X1, . . . ,Xn et de l’estimateur.

Nous ne donnons ici qu’un aperçu succinct de la litérature sur l’estimation robuste, et nous référons
le lecteur à [186], [187], [181], [180] qui contiennent d’excellentes introductions au domaine. Le do-
maine des statistiques robustes a commencé à être étudié dans les années 1960 [2], [3], [8]. Il englobe
principalement deux thématiques, à savoir la robustesse à la contamination - qui est étudiée dans
cette thèse - et la robustesse aux queues lourdes. L’article [58] prouve qu’il est possible d’estimer
la moyenne d’une distribution à queue lourde avec une vitesse sous-gaussienne en supposant sim-
plement que la distribution a un moment d’ordre 2. Ces résultats ont été étendus en dimension
quelconque dans [114] avec une procédure en temps exponentiel, et encore améliorés par [136, 108],
qui proposent des procédures en temps polynomial avec des propriétés statistiques comparables.
D’autres références et techniques concernant la robustesse aux queues lourdes peuvent être trouvées
dans [113].

Dans cette thèse, nous nous plaçons dans le cadre adversarial et nous nous intéressons à l’estimation
robuste de distributions discrètes, sous la contrainte de confidentialité différentielle locale. Sans la
contrainte de confidentialité, plusieurs travaux ont résolu le problème de l’apprentissage robuste de
distributions discrètes dans un cadre adversarial, par exemple [93], [130], [137], [131], [138], [123].
L’article [161] étend ces résultats au cas des densités.

1.7.3 Combinaison des deux contraintes

Bien que la robustesse et la confidentialité différentielle soient deux domaines de recherche active, la
combinaison de ces deux contraintes est un sujet de recherche extrêmement récent. Les liens entre
la robustesse et la confidentialité différentielle globale ont été étudiés dans [120, 115, 112]. Dans le
cadre de la confidentialité différentielle locale, seuls des travaux récents ont envisagé cette interac-
tion [157, 176], où les auteurs fournissent des bornes supérieures et inférieures pour l’estimation de
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distributions discrètes sous les deux contraintes, dans un cadre différent de celui que nous consid-
érons. L’article [163] étudie également le problème de l’estimation de la moyenne avec contraintes
de confidentialité différentielle locale et de robustesse aux outliers. Les articles ci-dessus se placent
dans le cadre adversarial et dans le cadre de la contamination de Huber. Il est important de noter
que combiner robustesse et confidentialité peut s’effectuer selon deux procédures différentes.

• Contamination avant la privatisation: L’adversaire peut jouer avant la privacy et rem-
placer certaines données non privatisées par des outliers. Le mécanisme de confidentialité Q
est seulement appliqué dans un deuxième temps sur cet ensemble de données corrompues.

• Contamination après la privatisation: L’adversaire peut également jouer à la deuxième
étape, après la privatisation, en remplaçant certains des points de données privatisés par des
outliers.

Dans cette thèse, nous nous plaçons dans le second cadre. Ces deux configurations peuvent sembler
très similaires et l’on pourrait s’attendre à ce qu’elles conduisent à des vitesses statistiques compa-
rables. Pourtant, il n’en est rien, et les phénomènes en jeu dans les deux cas ci-dessus se révèlent
très différents. Ainsi, dans chacun des articles ci-dessus [157, 176, 149], la vitesse minimax est tou-
jours plus rapide en cas de contamination survenant avant qu’après la privacy. Plus précisément,
en désignant par R∗

privacy la vitesse d’estimation minimax sous la seule contrainte de confidentialité
et par R∗

contam la vitesse d’estimation minimax sous la seule contrainte de contamination, la vitesse
minimax globale pour les deux contraintes combinées est toujours égale à R∗

privacy +R∗
contam avec

contamination avant la privacy et R∗
privacy +

√
d
α R

∗
contam avec contamination après la privacy. A

notre connaissance, il n’existe aucun résultat étendant ce phénomène à un cadre général, ce qui
peut être une future direction de travail très intéressante.

1.8 Overfitting bénin
L’overfitting bénin est un phénomène contre-intuitif récemment découvert dans la communauté du
deep learning. Il a été observé expérimentalement que les réseaux de neurones profonds peuvent
atteindre de très bonnes performances de généralisation tout en s’adaptant parfaitement aux don-
nées d’apprentissage bruitées [167, 105, 154]. Ce phénomène semble aller à l’encontre du compromis
classique entre biais et variance, qui suppose un nécessaire équilibre entre overfitting et underfit-
ting. En traçant l’erreur de test d’un réseau de neurones en fonction du nombre de ses paramètres,
l’article [105] a été le premier à exhiber expérimentalement la "courbe de risque à double descente".
Celle-ci réconcilie la courbe en forme de U prédite par le compromis biais-variance, et l’observation
que l’overfitting est compatible avec de bonnes performances de prédiction. Pour comprendre ce
phénomène, une série d’articles se sont penchés l’overfitting bénin dans le cadre de la régression
linéaire, qui est peut-être le cadre le plus simple où ce phénomène peut se produire (see [122], [146],
[133], [144], [152], [175]). Nous renvoyons le lecteur à [153] pour un aperçu plus complet. Dans cette
thèse, nous étudions uniquement l’overfitting bénin dans le cadre de la régression non-paramétrique.
Cependant, nous donnons ici un rapide aperçu de l’overfitting bénin dans d’autres contextes.
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1.8.1 Régression Ridge (et Ridge-less)

Dans le cadre de la régression linéaire, il existe un lien profond entre l’interpolation et la régression
ridge. Supposons que l’on dispose de n observations i.i.d. (Xi,Yi), i = 1, . . . ,n où

y = Xθ∗ + ξ. (1.22)

Ici, y = (Y1, . . . ,Yn)⊤, X = (X1, . . . ,Xn)⊤. Pour un certain λ > 0, l’estimateur de la régression
ridge est défini comme le vecteur unique θ̂R minimisant 1

n∥Xθ − y∥
2 + λ∥θ∥2. Ce programme

d’optimisation est en fait équivalent à minimser ∥Xθ − y∥2 sous contrainte ∥θ∥ ≤ b ou encore à
minimiser ∥θ∥ sous contrainte 1

n∥Xθ − y∥
2 ≤ c, pour certaines constantes b, c. Notons que, dans

le dernier programme, prendre λ → 0 est équivalent à prendre c → 0, de sorte que l’estimateur
interpolant de norme minimale θ̂ = arg minθ∈Rd ∥θ∥ t.q. ∥Xθ− y∥ = 0 est la limite de l’estimateur
ridge lorsque λ→ 0, également appelé estimateur ridgeless (notons que ce problème a une solution
dans le régime surparamétré où d > n). Dans la plupart des cas, l’étude de l’overfitting bénin dans
le cadre de la régression linéaire fait couramment usage de cet estimateur.

Cas linéaire avec covariables gaussiennes

Supposons que les (Xi,Yi) sont conjointement gaussiens. Nous supposons que EX = 0 et que
1
nEXX⊤ = Σ ∈ Rd×d où d ∈ N∗. Dans le cas asymptotique où d

n → γ > 0, l’estimateur ridgeless
(pondéré) a été étudié dans [172], [165], [147] pour une matrice de covariance générale connue Σ,
et [140] montre qu’avec un design aléatoire et dans le régime surparamétré où d > n, il peut être
optimal d’avoir un paramètre de régularisation λ ≤ 0.

Dans le cas non-asymptotique, l’article [122] donne des conditions nécessaires et suffisantes sur
la matrice de covariance Σ pour avoir le phénomène d’overfitting bénin, c’est-à-dire pour que
l’estimateur ridgeless soit proche de l’optimum minimax. Les auteurs montrent que la surparamétri-
sation ainsi que des conditions très spécifiques sur la décroissance des valeurs propres de Σ sont
nécessaires pour que ce phenomène se produise. Le papier [146] étudie précisément l’estimateur de
régression ridge dans le cadre surparamétré et donne des bornes non asymptotiques de généralisa-
tion pour une matrice de covariance générale Σ. Il montre de plus que ces bornes sont optimales
sur une certaine échelle de valeurs des paramètres de régularisation. Ces résultats ont ensuite été
raffinés dans [175].

1.8.2 Kernel ridge(less) regression

Des extensions à la régression ridgeless à noyau dans les RKHS ont été étudiées dans [142] lorsque
la taille de l’échantillon n et la dimension d sont supposées satisfaire n ≍ d, et dans [143] pour un
cas plus général d ≍ nα pour α ∈ (0, 1). Ces articles donnent des bornes supérieures dépendant des
données sur le risque qui peuvent être faibles en supposant des propriétés spectrales sur la matrice
de covariance des données et sur le noyau. D’autre part, si d est constant (indépendant de n), alors
l’estimateur interpolant de moindre norme par rapport au noyau de Laplace est inconsistant [116].
La régression ridge à noyau est une des méthodes statistiques d’estimation de fonctions. Ce cadre
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est donc étroitement lié au cadre de la régression non-paramétrique, que nous étudions dans cette
thèse.

1.8.3 Régression non-paramétrique

Dans le cadre de la régression non paramétrique, on dispose de n observations i.i.d. (Xi,Yi), i =
1, . . . ,n où Yi = f(Xi) + ϵi, Xi ∈ Rd, Yi ∈ R où les ϵi sont des variables aléatoires de bruit i.i.d.
indépendantes de Xi et f est une fonction inconnue à estimer. Nous supposons que f appartient à
une classe non-paramétrique donnée, comme les classes de fonctions de Hölder, Sobolev ou Besov
par exemple. Dans le cadre de la régression non-paramétrique avec régularité de Hölder connue
β ≤ 2, il existe des estimateurs interpolants atteignant des vitesses optimales minimax [106]. En
particulier, il a été prouvé dans [106] que l’estimateur Nadaraya-Watson avec un noyau singulier
peut interpoler les données tout en atteignant des vitesses minimax optimales.
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Chapter 2

Sharp Local Minimax Rates for
Goodness-of-Fit Testing in
multivariate Binomial and Poisson
families and in multinomials

This Chapter is based on the paper: “Sharp Local Minimax Rates for Goodness-of-Fit Testing
in multivariate Binomial and Poisson families and in multinomials” [132], by Julien Chhor and
Alexandra Carpentier (arXiv:2012.13766), to appear in Mathematical Statistics and Learning.

Abstract

We consider the identity testing problem - or goodness-of-fit testing problem - in multivariate
binomial families, multivariate Poisson families and multinomial distributions. Given a known
distribution p and n iid samples drawn from an unknown distribution q, we investigate how large
ρ > 0 should be to distinguish, with high probability, the case p = q from the case d(p, q) ≥ ρ,
where d denotes a specific distance over probability distributions. We answer this question in
the case of a family of different distances: d(p, q) = ∥p− q∥t for t ∈ [1, 2] where ∥ · ∥t is the
entrywise ℓt norm. Besides being locally minimax-optimal - i.e. characterizing the detection
threshold in dependence of the known matrix p - our tests have simple expressions and are easily
implementable.

Keywords: Minimax Identity Testing, Goodness-of-fit Testing, Multinomial Distributions, Multi-
variate Poisson Families, Locality.

2.1 Introduction
We consider the problem of identity testing or goodness-of-fit testing in multivariate binomial fami-
lies, multivariate Poisson families and multinomial distributions. At a high level, this problem aims
at testing whether or not the data distribution matches a given known distribution. Throughout
the paper, we will state the results in the multivariate binomial setting, and will establish the
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link with multivariate Poisson families and multinomials later on. The problem can be stated as
follows: given n i.i.d. realizations of an unknown multivariate Binomial family - see Section 2.2 -
with unknwon distribution q, and given a known distribution p, we want to test

H0 : p = q vs H1 : d(p, q) ≥ ρ,

for a given distance d and separation radius ρ.

The difficulty of this testing problem is characterized by the minimal separation radius ρ needed to
ensure the existence of a test that is uniformly consistent under both the null and the alternative
hypothesis - i.e. a test whose worst-case error is smaller than a given η > 0, and to identify such a
test. See Section 2.2 for a precise definition of the setting.

In this paper, we will mostly focus on the following goals:

• We focus on the case where the distance d is the ℓt distance, namely, if p = (p1, . . . , pN )

and q = (q1, . . . , qN ), then d(p, q) =
(

N∑
i=1
|qi − pi|t

)1/t
for any t ∈ [1, 2]. Typically, the case

t = 2 and t = 1 (total variation distance for discrete distributions) are considered, and we
interpolate between these two extreme cases.

• Our main objective will be to develop tests - as well as matching lower bounds - for this
identity testing problem that are locally optimal in that the minimax separation distance
ρ should depend tightly on p. Indeed, it is clear that some p will be “easier” to test than
others. Consider e.g. the following two extreme cases in the case of discrete (multinomial)
distributions over {1, . . . ,N}: (i) the very “easy” case where p is a Dirac distribution on one
of the coordinates, which implies a very low noise, and (ii) the very “difficult” case where
all entries of p are equal to 1/N , which maximizes the noise. It is clear that the minimax
local separation distance should differ between these two cases and be much smaller in case
(i) than in case (ii). We aim at studying the minimax local separation distance for any p, and
characterize tightly its shape depending on p.

The existing literature about hypothesis testing [1] is profuse: the goodness-of-fit problem has been
thoroughly studied, especially in the case of signal detection in the Gaussian setting, notably by
Ingster - see [183] - and has given rise to a vast literature. In parallel to the study of hypothesis
testing, there exists a broad literature on the related problem of property testing with seminal
papers such as [25, 30].

The identity testing problem in multinomials - i.e. probability distributions over a finite set - has
been widely studied in the literature. We refer the reader to [168], [128], [96] for excellent surveys.
When observing n iid data with unknown discrete distribution q and when fixing a distribution p,
the aim is to derive the minimal separation distance ρ so that a uniformly consistent test exists for
testing H0 : p = q vs H1(ρ) : d(p, q) ≥ ρ. Note that this problem is also often considered in the
dual setting of sample complexity, where the goal is to find the minimal number of samples n such
that a consistent test exists for a given separation ρ > 0. One distinguishes between global results
which are obtained for the worst case of the distribution p, and local results, where the minimax
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separation distance is required to depend precisely on any given p. For global results, see e.g. [16]
(in Russian), [17], [23], [179], [48], and also in the related two-sample testing problem - where both
p, q are unknown and observed through samples - see e.g. [32, 66]. In the present paper, we focus
on local results. In the case of the ℓ1 distance, important contributions to local testing have been
established in e.g. [95], [81]. Note that these papers provide results in terms of sample complexity,
and more recently, the paper [104] has re-considered this problem in terms of minimax separation
distance - focusing also on the case of smooth densities. Another quite related work is [124], in-
vestigating the rate of goodness-of-fit testing in the multinomial case, in the ℓ1 and ℓ2 distances,
under privacy constraints. Regarding the related two sample testing problem, see [57, 72, 81, 139].
This multinomial framework proves very useful for a wide range of applications, which include Ising
models [109], bayesian networks [129] or even quantum mechanics [103].

The papers [95, 104] are the most related to our present results, due to the equivalence between the
multivariate binomial and Poisson distribution settings and the multinomial setting after a Pois-
sonization trick - see section 2.3.1 for more details on why our setting encompasses those settings.
We postpone a precise discussion between our result and this stream of literature to the core of
the paper∗, since it is technical. As high-level comments, we restrict to remarking this stream of
literature only considers separation in total variation distance, namely the ℓ1 distance for discrete
distributions.

Note that goodness-of-fit testing for inhomogeneous Erdös-Rényi random graphs (see the definition
e.g. in [135]), is a direct an important corollary of our result about multivariate binomial local
testing. This result is therefore interesting as only little literature exists about identity testing in
random graphs - and to the best of our knowledge, no literature exists about local identity testing
in the sense described above (see for example [134] for global testing in inhomogeneous random
graphs). In recent machine learning and statistical applications, the increasing use of networks has
made large random graphs a decisive field of interest. To name a few topics, let us mention commu-
nity detection, especially in the stochastic block model ([85], [65], [74], [77], [53]), in social networks
([78], [76]), as well as network modeling ([35], [185]), or network dynamics ([41]). The papers [135]
and [102] propose an analysis of the two sample case, under sparsity: Given two populations of
mutually independent random graphs, each population being drawn respectively from the distri-
butions P and Q, they perform the minimax hypothesis testing H0 : P = Q vs H1 : d(P ,Q) ≥ ρ
for a variety of distances d, and identify optimal tests over the classes of sparse graphs that they
consider. The paper [70] identifies a computationally efficient algorithm for testing the separability
of two hypotheses. Testing between a stochastic block model versus an Erdös-Rényi model has
been studied in [90] and [83]. Phase transitions are also known for detecting strongly connected
groups or high dimensional geometry in large random graphs ([79]). The paper [94] tests random
dot-product graphs in the two sample setting with low-rank adjacency matrices. The paper [91]
examines a more general case in which the graphs are not necessarily defined on the same set
of vertices. To summarize, only few papers address the construction of efficient tests in random
graphs - although this would be valuable in various areas such as social networks [64], brain or
‘omics’ networks [92] [63], testing chemicals [56] or ecology and evolution [52]. Moreover, and to

∗We compare with this stream of literature under our upper and lower bounds in Sections 2.3, and also in the
discussion in Section 2.4.
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the best of our knowledge, no paper considers the local version of the testing problem - i.e. focuses
on obtaining separation distances that depend on the null hypothesis.

The paper is organized as follows: In Section 2.2, we describe the setting by defining the multivariate
binomial model and the minimax framework. In Section 2.3, state our main theorem, which gives
an explicit expression of the minimax separation radius as a function of p and n. In Section 2.3.1,
we establish the equivalence between the binomial, the Poisson and the multinomial settings. In
Section 2.4, we discuss our results, by comparing them with the state of the art, especially with
the multinomial setting. In Section 2.5, we describe our lower bound construction. In Section 2.6,
we describe our tests and state theoretical results guaranteeing their optimality. We finally provide
additional comments on our results in Section 2.7. All proofs are deferred to the Appendix.

2.2 Problem statement

2.2.1 Setting

We first introduce the Binomial setting. In Section 2.3.1, we will introduce two other very related
settings (the Multinomial and the Poisson settings) and prove that the associated minimax rates
can be deduced from the Binomial case.

Let N ∈ N, N ≥ 2 and define PN = [0, 1]N . Let q = (q1, . . . , qN ) ∈ PN be an unknown vector of
Bernoulli parameters. Assume that we observe X1, . . . ,Xn iid such that each Xi can be written
as Xi =

(
Xi(1), . . . ,Xi(N)

)
where all of the entries Xi(1), . . . ,Xi(N) are mutually independent

and Xi(j) ∼ Ber(qj). We slightly abuse notation and write X1, . . . ,Xn
iid∼ q when X1, . . . ,Xn are

generated with this distribution. Assume that n is even: n = 2k, for k ∈N. This assumption can
be made wlog and makes the analysis of the upper bound more convenient by allowing for sample
splitting. We denote the total variation distance between two probability measures by dTV and for
any p ∈ RN and for t > 0, we define

∥p∥t =
[

N∑
j=1
|pj |t

]1/t

.

2.2.2 Minimax Testing Problem

We now define the testing problem considered in the paper. Let η ∈ (0, 1) be a fixed constant
and let t ∈ [1, 2]. We are given a known vector p ∈ PN and we suppose that the data is gener-
ated from an unknown vector q: X1, . . . ,Xn

iid∼ q. We are interested in the following testing problem:

Hp0 : q = p vs Hρ,p,t
1 : q ∈ PN ; ∥p− q∥t ≥ ρ. (2.1)

This problem is called “goodness-of-fit testing problem”. When no ambiguity arises, we write H0
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and H1 to denote the null and alternative hypotheses.

A test ψ is a measurable function of the observations X1, . . . ,Xn, taking only the values 0 or 1.
We measure the quality of any test ψ by its maximum risk, defined as:

R(ψ) := Rρ,p,t,n(ψ)

= Pp(ψ = 1) + sup
q s.t.

∥p−q∥t≥ρ

Pq(ψ = 0). (2.2)

R(ψ) is the sum of the type-I and the type-II errors.

The minimax risk is the risk of the best possible test, if any:

R∗ := R∗
ρ,p,t,n = inf

ψ test
R(ψ)

= inf
ψ test

Pp(ψ = 1) + sup
Q:∥p−q∥t≥ρ

Pq(ψ = 0)

 .

Note that R∗ := R∗
ρ,p,t,n depends on the choice of the norm indexed by t, the vector p, the sepa-

ration radius ρ, and the sample size n. Since all quantities depend on p, we say that the testing
problem is local - around p - as opposed to classical approaches in the minimax testing literature,
where one generally only considers a family of vectors p and focuses only on the worst case results
over this family - see e.g. [91].

In the following, we fix an absolute constant η ∈ (0, 1) and we are interested in finding the
smallest ρ∗

p,t,n such that R∗
ρ∗
p,t,n,p,t,n ≤ η:

ρ∗
p,t,n(η) = inf

{
ρ > 0 : R∗

ρ,p,t,n ≤ η
}

. (2.3)

We call ρ∗
p,t,n(η) the η-minimax separation radius. Whenever no ambiguity arises, we drop the

indexation in n, p, t, η and write simply ρ∗,R∗
ρ,Rρ(ψ) - but these variables remain important, as

will appear later on.

The aim of the paper is to give the explicit expression of ρ∗
p,t,n up to constant factors depending

only on η and to construct optimal tests, for any p ∈ PN and all t ∈ [1, 2].

Additional notation. Let η > 0. For f and g two real-valued functions defined, we say that
f ≲η g (resp. f ≳η g) if there exists a constant cη > 0 (resp. Cη > 0) depending only on η, such
that cηg ≤ f (resp. f ≥ Cηg). We write f ≍η g if g ≲η f and f ≲η g. Whenever the constants are
absolute, we drop the index η and just write ≲,≳,≍. We respectively denote by x ∨ y and x ∧ y
the maximum and minimum of the two real values x and y.
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2.3 Results
Without loss of generality, assume that max

1≤j≤N
pj ≤ 1

2 . Otherwise, if for some j ∈ {1, . . . ,N}, pj > 1
2 ,

replace pj by 1− pj and replace accordingly Xi(j) by 1−Xi(j) for all i = 1, · · · ,n = 2k. Wlog,
assume that all entries of the known vector p are sorted in decreasing order:

p = (p1 ≥ p2 ≥ · · · ≥ pN ).

For any index 1 ≤ u ≤ N , we define the vectorsp≤u = (p1, · · · , pu, 0, · · · , 0)
p>u = (0, · · · , 0, pu+1, · · · , pN ).

Let η > 0. In what follows, we write

r =
2t

4− t and b =
4− 2t
4− t . (2.4)

for p we also define

I = min

J :
∑
i>J

p2
i ≤

cI
n2

 (2.5)

where cI is a small enough constant depending only on η. We will prove the following theorem.
Theorem 2.1. For all t ∈ [1, 2], the following bound holds, up to a constant depending only on η
and t:

ρ∗ ≍η,t

√√√√∥∥∥p≤I
∥∥∥
r

n
+

∥∥∥p>I∥∥∥ 2−t
t

1

n
2t−2
t

+
1
n

,

where we recall that I = I(n, p, t).
The lower bounds and the minimax test are given in Section 2.5 and Section 2.6.

2.3.1 Equivalence between the Binomial, the multinomial and the Poisson set-
ting

We now move to the multinomial and Poisson settings. In the following propositions, we state that
the multinomial and the multivariate Binomial model are equivalent to the multivariate Poisson
setting after using the Poissonization trick, and that the results from the binomial setting can be
transferred to the other two settings. The Poissonization trick consists in drawing ñ ∼ Poi(n)
observations instead of n, either from the multinomial or from the multivariate binomial model.
The resulting data is exactly distributed as a multivariate Poisson family.
Prop 2.1 (Poissonization trick for multinomials). Let n ≥ 2 and assume that p, q are probability vec-
tors, i.e. such that

∑
i pi =

∑
i qi = 1. Let ñ ∼ Poi(n). Conditional on ñ, let Z1, · · · ,Zñ

iid∼ M(q).
We build the histogram sufficient statistic by defining, for all j = 1, · · · ,N , Hj =

∑ñ
i=1 1 {Zi = j}.

Then for all j, Hj ∼ Poi(nqj) and H1, · · · ,HN are mutually independent.
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Prop 2.2 (Poissonization trick for binomial families). Let n ≥ 2 and ñ ∼ Poi(n). Conditional on
ñ, let X1, · · · ,Xñ

iid∼
⊗N

j=1Ber(pj). Then
∑ñ
i=1Xi ∼

⊗N
j=1 Poi(npj).

These two propositions are classical and follow from basic properties of the Poisson, Multinomial,
and Binomial distributions. We rewrite them here only to provide some context on the equivalences
that follow.

Without loss of generality, assume that p1 ≥ · · · ≥ pN . We consider the following settings:

1. Binomial case: This is the setting considered above. We define P (Bin) = {Ber(p); p ∈ RN
+}

where by convention, Ber(p) :=
⊗N

j=1Ber(pj). We fix p ∈ P (Bin) and suppose we observe
X1, · · · ,Xn

iid∼ Ber(q) for q ∈ P (Bin) unknown. We consider the binomial testing problem:

H
(Bin)
0 : q = p vs H

(Bin)
1 :

q ∈ P (Bin);
∥q− p∥t ≥ ρ.

2. Poisson case: P (Poi) = {Poi(p); p ∈ RN
+} where by convention, Poi(p) :=

⊗N
j=1 Poi(pj).

We fix p ∈ P (Poi) and suppose we observe Y1, · · · ,Yn iid∼ Poi(q) for q ∈ P (Poi) unknown. We
consider the Poisson testing problem:

H
(Poi)
0 : q = p vs H

(Poi)
1 :

q ∈ P (Poi);
∥q− p∥t ≥ ρ.

3. Multinomial case P (Mult) =
{
M(p)

∣∣∣ p ∈ RN
+ ,∑N

j=1 pj = 1
}

where M(p) denotes the
multinomial distribution over {1, . . . ,N}. We fix p ∈ P (Mult) and suppose we observe
Z1, · · · ,Zn iid∼ M(q) for q ∈ P (Mult) unknown. We consider the Multinomial testing prob-
lem:

H
(Mult)
0 : q = p vs H

(Mult)
1 :

q ∈ P (Mult);
∥q− p∥M,t ≥ ρ.

where for x = (x1, · · · ,xN ): ∥x∥M,t =
[∑N

j=2 |xj |t
]1/t

is the multinomial norm, defined
without taking the first coordinate into account. Indeed, because of the shape constraint∑
pj = 1, the first coordinate does not bring any information and can be deduced from the

N − 1 coordinates.

For these three testing problems, we define respectively ρ∗
Bin(n, p, t, η),

ρ∗
Poi(n, p, t, η), ρ∗

Mult(n, p, t, η) for the minimax separation distances in the sense of Equation (2.3),
for each of the testing problems.
We state the following statement regarding the equivalence between all models.
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Lemma 1. (Equivalence between the Binomial and Poisson settings) Let t ∈ [1, 2]. There
exist two absolute constants cBP , CBP > 0 depending on η such that ∀p ∈ [0, 1]N , ∀n ≥ 2 η > 0, :

cBP ρ
∗
Bin(n, p, t, η) ≤ ρ∗

Poi(n, p) ≤ CBP ρ∗
Bin(n, p, t, η).

Lemma 2. (Equivalence between Multinomial and Poisson settings) Let t ∈ [1, 2]. It
holds that ∀p ∈ [0, 1]N , ∀n ≥ 2 η > 0, if ∑N

i=1 pi = 1:

ρ∗
Mult(n, p, t, η) ≲η ρ

∗
Poi(n, p− max) ≲η ρ∗

Mult(n, p, t, η)

where p− max := (p2, · · · , pN ).

This entails the following corollary regarding the minimax rates of testing in the multinomial model:

Corollary 2.1. Let t ∈ [1, 2]. The minimax separation radii in the Poisson and multinomial cases
are respectively given by:

ρ∗
Poi(n, p, t, η) ≍η

√
∥p≤I∥r
n

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

for p ∈ P (Poi)

ρ∗
Mult(n, p, t, η) ≍η

√
∥p− max

≤I ∥r
n

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

for p ∈ P (Mult),

where we recall that I = I(n, p, t).

Note that the upper bounds in the Poisson model are obtained using our tests on the Poisson
vector, and the upper bounds in the Multinomial model are obtained using our tests on the last
N − 1 coordinates of the estimates of probabilities of each categories.

2.4 Discussion
In this entire section, we mostly discuss the Multinomial setting - whose rates are given in Corol-
lary 2.1 - which is the most studied setting in the literature. To alleviate notations, we will write
ρ∗(n, p) for the minimax separation distance in the Multinomial model, dropping the dependence
on η.

2.4.1 Locality of the results

In the present paper, we derive sharp local minimax rates of testing in the binomial, Poisson
and multinomial settings. The locality property is a major aspect of the results: for each fixed
p we identify the detection threshold associated to p, where p is allowed to be any distribution
in the class. For related local results in the case of the ℓ1 or ℓ2 norm, see e.g. [95], [81], [104]
[124]. This approach is less standard than the usual global approach, which consists in finding the
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largest detection threshold in the class, i.e. for the worst case of p - see e.g. [16] (in Russian),
[17], [23], [179], [48]. Yet, local results can substantially improve global results: for instance,
in the multinomial case and for the ℓ2 norm, the global separation radius for an N -dimensional
multinomial is classically N−1/4/

√
n, and is reached in the case where p is uniform distribution.

However, if p = (1, 0, . . . , 0) is a Dirac multinomial, then from our results the rate of testing
in ℓ2 norm is 1

n , hence much faster than the global rate. Even for fixed N , one can actually
find a sequence of null distributions p(n) whose associated separation distance ρ∗

Mult(n, p(n), 2, η)
reaches any rate 1/nα for any 1/2 ≤ α ≤ 1 This consequently improves the global rate even
for less extreme discrete distributions than Dirac multinomials. To give an example, consider
an exponentially decreasing multinomial distribution p(n) =

(
c

n(2α−1)j

)N
j=1

for the renormalizing

constant c = n2α−1 1−1/n2α−1

1−1/n(2α−1)N ≍ n2α−1. Then, evaluating the local rate in ℓ2 (allowing us to
consider the whole set of coefficients as the bulk, see Section 2.7.1 below), we get:

ρ∗
Mult(n, p(n), 2, η) ≍η

√
∥p− max∥2

n
+

1
n
≍η

1
nα

.

2.4.2 Comparison with existing literature in the multinomial case

Our results are quite related to those of [95], which examines the multinomial testing problem
for the ℓ1 distance and in terms of sample complexity. More precisely, for a fixed N -dimensional
multinomial distribution p, and for a fixed separation ρ, this work investigates the smallest number
n∗(p, ρ) of samples X1, · · · ,Xn

iid∼ M(p) needed to ensure that the Multinomial testing problem
introduced in Section 2.3.1 has a minimax risk less than 2/3, for a fixed separation distance ρ > 0.
Formally this is defined as n∗(p, ρ) = min

{
n ∈N : R∗

ρ,p,t,n ≤ 2/3
}

where R∗
ρ,p,t,n denotes here

the minimax risk for the multinomial problem†. Note that the quantities n∗ and ρ∗ are dual, for
η = 2/3.

[95] proves the following bounds to characterize the optimal sample complexity n∗(p, ϵ) when given
a fixed ϵ > 0:

1
ϵ
+
∥p− max

−ϵ ∥2/3
ϵ

≲ n∗(p, ϵ) ≲
1
ϵ
+
∥p− max

−ϵ/16∥2/3

ϵ
.

In the above bound, p = (p1, · · · , pN ) where p1 ≥ · · · ≥ pN ≥ 0 and ∑N
i=1 pi = 1. For ϵ > 0, let J

be the smallest index such that ∑i>J pi ≤ ϵ. The notation p− max
−ϵ denotes (p2, . . . , pJ ).

We generalize the result in several respects:

• We consider the whole range of ℓt distances for t in the segment [1, 2] and characterize the
local rates of testing in each case,

• We generalize the multinomial case to the graph case (binomial case) and to the Poisson
setting, through the Poissonization trick.

†See Equation (2.2) for the definition of this quantity in the graph problem.
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In Appendix 2.D, we justify that the upper and lower bounds from [95], when translated in terms of
separation radius as in [104] actually match in the multinomial case, although claimed otherwise by
the authors of [104] themselves. It was therefore unclear in the literature so far that matching upper
and lower bounds on the critical radius were actually known in the case t = 1. All of these cases
involve the following ideas. The distribution can be split into bulk (set of large coefficients, with
a subgaussian phenomenon) and tail (set of small coefficients, with a subpoissonian phenomenon).
To the best of our knowledge, the way we define the tail is new. It allows us to establish a clear
cut-off between these two optimal sets, fundamentally differing through the behavior of the second
order moment of p.

The present paper can be linked with [107], which considers instance optimal identity testing.
Specifically, [107] obtains a different characterization of the sample complexity for the case t = 1,
in terms of a fundamental quantity in the theory of interpolation of Banach spaces, known as
Peetre’s K-functional. This functional is defined for all u > 0 as

κp(u) = inf
p′+p′′=p

∥p′∥1 + u∥p′′∥2.

This paper proves that for fixed ϵ ∈ (0, 1), any test for testing identity to p needs at least
Cκ−1

p (1 − 2ϵ) samples in order to have a risk less than η, where C > 0 is a constant depend-
ing only on η. In Section 6.3, especially equation (14) this paper discusses the non-tightness of [95].
Note that their bound is not optimal either, but is incomparable to [95]. This paper also provides
a testing algorithm considering separately tail and heavy elements of the distribution, as well as a
lower bound that uses interpolation theory to divide the problem into two types of elements - the
ℓ1 contribution (heavy elements) and the ℓ2 ones (uniform-like).

Building on this work, [118] Appendix D: provides a general reduction scheme showing how to
perform instance-optimal one-sample testing, given a "regular" (non-instance optimal) one-sample
testing algorithm (even only for uniformity testing). This applies in particular to local privacy, or
testing under communication constraints, or even without constraints at all.

2.5 Lower bounds
We recall the definitions of r and b in equation (2.4). In what follows, index A is defined as

A = Ap,t,n(η) := max

a ≤ I : pb/2
a ≥ cA

√
n
( ∑
i≤I

pri

) 1
4

, (2.6)

where cA > 0 is a small enough constant depending only on η. We adopt the convention that
max ∅ = −∞ and that p≤−∞ = ∅ and p>−∞ = p. We start by presenting the lower bound part of
Theorem 2.1. We divide the analysis into two parts: a lower bound for the large coefficients of p
(bulk) and a lower bound for the small coefficients of p (tail). The bulk will be defined as the set
p≤A and the tail as p>A.
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Lower bound for the bulk

To prove the lower bound, we identify a radius ρ such that, if the ℓt distance between H0 and H1 is
less than ρ, then any test has risk at least η. Therefore, by definition of ρ∗, ρ is necessarily a lower
bound on ρ∗.

Proposition 2.1. Let t ∈ [1, 2]. There exists a constant c′
η > 0 depending only on η, as well as a

distribution q such that for any test ψ we have

∥∥∥(q− p)≤A
∥∥∥
t
≥ c′

η

 ∥∥p≤A
∥∥r/t
r√

n
∥∥p≤I

∥∥r/4
r

+
1
n

 ,

and
Pp(ψ = 1) + Pq(ψ = 0) ≥ η.

This implies that ρ = ∥p≤A∥r/t
r√

n∥p≤I∥r/4
r

+ 1
n is a lower bound on the minimax separation radius ρ∗.

Note that the lower bound in 1
n is trivial since changing any entry of p by 1

n is not detectable with
high probability. Now let us examine the first part of the rate. To prove this lower bound, we use
Le Cam’s two points method by defining a prior distribution over a discrete subset of PN satisfying
H1. More precisely, for all (δ1, · · · , δA) ∈ {±1}A we define the distribution qδ such that:

(qδ)j =

{
pj + δiγj if j ≤ A
pj otherwise, (2.7)

where, for some small enough constant cγ > 0 depending only on η:

γi =
cγ p

2
4−t
i

√
n
(∑

i≤I p
r
i

) 1
4

. (2.8)

The mixture
P̄bulk =

1
2A

∑
δ∈{±1}A

q⊗n
δ

defines a probability distribution over the set of observations X1, . . . Xn, such that, conditional on
δ ∈ {±1}A, the observations are iid with probability distribution qδ.

The core of the proof is to prove that observations X1, . . . ,Xn drawn from this mixture distribution
P̄bulk are so difficult to distinguish from observations X ′

1, . . . X ′
n drawn from Pp, that the risk of

any test is necessarily larger than η. This brings us to the conclusion of our proposition since

any distribution qδ is separated away from p by an ℓt distance equal to
(∑A

i=1 γ
t
i

) 1
t ≍ ∥p≤A∥r/t

r√
n∥p≤I∥r/4

r

.

Therefore, ∥p≤A∥r/t
r√

n∥p≤I∥r/4
r

is necessarily a lower bound on the separation radius ρ∗ This lower bound
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is an extension to the case where t ∈ [1, 2] of the lower bound in [95] which is given for the case
t = 1, up to some issues that are discussed in details in Subsection 2.4.2.

Lower bound for the tail

We now derive a lower bound for the tail p>A, containing the smallest coefficients of p. The tail
lower bound involves very different phenomena compared to the above bulk lower bound. The
reason is that the definition of A implies that on the tail, whp, no same coordinate is observed twice
or more among the n data.

Proposition 2.2. Let t ∈ [1, 2], and consider any test ψ. There exists a constant c′
η > 0 depending

only on η and a distribution Q such that

∥∥(q− p)>A∥∥t ≥ c′
η

∥p>I∥
2−t
t

1

n
2t−2
t

,

and
Pp(ψ = 1) + Pq(ψ = 0) ≥ η.

To prove this lower bound, we once more use Le Cam’s two points method with a sparse prior
distribution. Define the smallest index U > I such that n2pU∥P≥U∥1 ≤ cu < 1 where cu > 0 is a
small constant defined in the appendix. We define

π̄ =
cu

n2∥p≥U∥1
and πi =

pi
π̄

.

Index U has no further meaning than to guarantee that for all i ≥ U : πi ∈ [0, 1]. In particular, πi
is a Bernoulli parameter. Now, we define the following prior on q. For any i < U we set qi = pi.
Otherwise for i ≥ U , we set bi ∼ Ber(πi) mutually independent, and

qb(i) = biπ̄, (2.9)

We now consider the mixture of the probability distributions qb:

P̄tail =
∑

b∈{0,1}{U+1,...,N}

( ∏
j>U

π
bj
j (1− πj)1−bj

)
q⊗n
b .

As above, we prove that the data X1, . . . ,Xn drawn from this mixture P̄tail is difficult to distinguish
from the data X ′

1, . . . ,X ′
n drawn from Pp. Moreover, we show that with high probability, the ℓt

distance between P̄tail and p, is larger, up to an absolute constant than

∥p≥U∥
2−t
t

1

n
2(t−1)
t

.
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Finally, to conclude the proof, we show in Lemma 8 that

∥p≥U∥
2−t
t

1

n
2(t−1)
t

+ 1
n ≍η

∥p>I∥
2−t
t

1

n
2(t−1)
t

+ 1
n

in words, that we can replace U by I. This lower bound departs significantly from the one in [95]
in the case t = 1, which is significantly simpler than for t > 1 for the tail coefficients.

Combination of both lower bounds

By combining Propositions 2.1 and 2.2, we obtain the following theorem.

Theorem 2.2. Let t ∈ [1, 2], and consider any test ψ. There exists a constant c′
η > 0 depending

only on η and a distribution q such that

∥Q− P∥t ≥ c
′
η


√
∥p≤I∥r
n

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

 ,

and
Pp(ψ = 1) + Pq(ψ = 0) ≥ η.

This theorem implies that

ρ∗ ≳η

√
∥p≤I∥r
n

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

,

which is a lower bound on the separation radius ρ∗, up to a positive constant depending only on η.

Note that when combining Propositions 2.1 and 2.2, we do not get exactly the expression in Theorem
2.2. We actually obtain:

ρ∗ ≳η
∥P≤A∥r/t

r√
n∥P≤I∥r/4

r

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

.

We therefore need to show that this expression is equivalent to that in Theorem 2.2. This is done

by using Lemma 9, which states that we can replace ∥P≤A∥
r
t
r

√
n∥P≤I∥

r
4
r

by
√

∥p≤I∥r
n without changing the

rate, i.e.
∥P≤A∥

r
t
r

√
n∥P≤I∥

r
4
r

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

≍η

√
∥p≤I∥r
n

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

.

Remark on index A: As explained in (2.7), the optimal prior is of the form pi ± γi where γi is
proportional to p

2
4−t
i , according to Equation (2.8). Since 2

4−t ≤ 1, we can have γi > pi if pi is too
small, so that it is impossible to set the optimal prior pi ± γi, since pi − γi has to be a Bernoulli
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parameter. The index A is just the last index ensuring pA ≥ γA so that our lower bound construc-
tion is well-defined.

Remark on index I: Index I defines the largest set of coefficients p>I such that, whp, no co-
ordinate j > I is observed twice or more. This is exactly the interpretation of the relation∑
j>I n

2p2
j ≤ cI for a small constant cI . As shown in Lemma 13, it is important that the defi-

nition of A also implies that ∑j>A n
2p2
j ≤ cI + c4

A, which leads us to tune the constants cI and
cA such that this sum is small. Therefore, on the actual tail (p>A), no same coordinate will be
observed twice whp under H0. This is the reason why the phenomena involved are different on the
bulk and on the tail. On the bulk, many coordinates are observed at least twice, which allows us to
build an estimator based on the dispersion of the data around its mean, namely the renormalized
χ2 estimator which is a modified estimator of the variance. Like in the classical gaussian signal
detection setting, the optimal procedure for detecting whether or not the data is drawn from p is
to estimate the dispersion of the data.
On the tail, however, each coordinate is observed at most once, so that the dispersion of the data
cannot be estimated. On this set, we rather design a prior distribution which mimics the behavior
of the null distribution, while being as separated from it as possible. More precisely, we impose that
whp, no coordinate is observed twice, and such that coordinate-wise, the expected number of ob-
servations is equal to that under the null hypothesis p. In short, this prior is designed such that its
first order moment is equal to that under the null and its second order moment is unobserved whp.
Under both of these constraints, we maximize the ℓt distance between the null hypothesis p and the
possible distributions composing the prior. When t > 1, the result of this process is a prior that
needs to be relatively sparse - which is significantly more involved than the case t = 1 treated in [95].

Remark on the lower bounds: The bulk lower bound is close to that of [95]. The tail lower
bound relies on a sparse prior that is an existing technique (for example in sparse testing, see [36],
[87], [162]) and is very different from the construction in [95]. Handling the indices I,A and U
require careful manipulations that we believe are new techniques.

2.6 Upper bounds
Recalling that n = 2k, we use sample splitting to define

S =
k∑
i=1

Xi, and S′ =
n∑

i=k+1
Xi,

We also write
b =

4− 2t
4− t .
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Test for the bulk coefficients

We now introduce the following test statistic on the bulk coefficients, i.e. the coefficients with index
smaller than A :

Tbulk =
∑
i≤A

1
pbi

(
Si
k
− pi

)(
S′
i

k
− pi

)
, (2.10)

which is a weighted χ2 statistic. We now define the test

ψbulk = 1
{
Tbulk >

cη
n

∥∥p≤A
∥∥ r2
r

}
,

where cη = 4/
√
η is a large enough constant, depending only on η. We prove the following

proposition regarding this statistic and the bulk of the vector p.

Proposition 2.3. There exists c′
η > 0, such that the following holds.

• Type I error is bounded:
Pp(ψbulk = 1) ≤ η/2.

• Type II error is bounded: for any q such that

∥q≤A∥t ≥ c′
η

√∥p≤I∥r
n

+
1
n

 ,

it holds that
Pq(ψbulk = 0) ≤ η/2.

For t = 1, we get r = 2
3 , which is the norm identified in [95]. However, our setting is slightly differ-

ent for three reasons. First, we consider multivariate binomial families rather than multinomials.
Second, we consider separation distance for a fixed n instead of sample complexity. Third, our
result holds for any t ∈ [1, 2]. However, in Subsection 2.3.1, we prove that multivariate binomial
and multinomial settings are related and that the rates can be transferred from our setting to the
multinomial case.

Note that our cut-off is defined differently from that in [95]. In [95], the cut-off I ′ is the smallest
index such that, for a fixed ϵ: ∑i>I′ pi ≤ ϵ. This definition therefore only involves the first order
moment of the null distribution. In our setting, conversely, we define index I using the second order
moment of the null distribution, as the smallest index such that ∑i>I p

2
i ≤

cI
n2 .

The above result also generalizes the bound identified in [95], by characterizing the testing rate for
all t ∈ [1, 2] and sheds light on a duality between the ℓt and ℓr norms when r = 2t

4−t .
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Test for the tail coefficients

The tail test is a combination of two tests. We define the histogram of the data which is a sufficient
statistic:

∀j > A,Nj :=
n∑
i=1

1{Xi = j}

We first define the test ψ2 which rejects H0 whenever one tail coordinate is observed twice.

ψ2 = 1
{
∃j > A : Nj ≥ 2

}
(2.11)

We also define a statistic counting the number of observations on the tail, and the associated test,
recalling that cη = 4/

√
η:

T1 =
∑
i>A

Ni

n
− pi, ψ1 = 1

{
|T1| > cη

√∑
i>A pi
n

}
. (2.12)

We prove the following proposition regarding this statistic.

Proposition 2.4. There exists c′
η > 0, such that the following holds.

• Type I error is bounded:
Pp(ψ1 ∨ψ2 = 1) ≤ η/2.

• Type II error is bounded: for any q such that

∥q>A∥t ≥ c′
η

∥p>A∥ 2−t
t

1

n
2t−2
t

+
1
n

 ,

it holds that
Pq(ψ1 ∨ψ2 = 0) ≤ η/2.

Recall that the tail is defined such that, whp under H0, no same coordinate is observed at least
twice. We therefore combine two tests: The test ψ2 rejects H0 if one of the coordinates is observed
at least twice, while the test ψ1 rejects H0 if the total mass of observed coordinates differs sub-
stantially from its expectation under the null. Proposition 2.4 proves that this combination of tests
reaches the optimal rate.

In [95], the tail test only involves the first order moment, which is sufficient in the case of the ℓ1
norm. Moreover, in the proof of Proposition 2.4, it becomes clear that for t = 1 we only need the
test ψ1 and for t = 2 we only need the test ψ2. However in the case of the ℓt for t ∈ (1, 2), the
combination of both ψ1 and ψ2 is necessary.
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Aggregated test

We now combine the above results to define the aggregated test. We define our test as

ψ = ψbulk ∨ψ1 ∨ψ2.

This is the test rejecting the null whenever one of the three tests does. Denote by

ρ̄ =

√
∥p≤I∥r
n

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

.

The following theorem states that this test reaches the rate ρ̄, which is the minimax rate ρ∗ given
in Theorem 2.1. In other words, it guarantees that, whenever the two hypotheses are ρ̄-separated
in ℓt distance, this test has type-I and type-II errors upper bounded by η/2, ensuring that its risk
is less than η. Since the minimax separation radius ρ∗ is the smallest radius ensuring the existence
of a test satisfying this condition, we can conclude that ρ∗ ≲ ρ̄.

Theorem 2.3. There exists c′
η > 0, such that the following holds.

• The type I error is bounded:
Pp(ψ = 1) ≤ η/2.

• The type II error is bounded: for any q such that

∥p− q∥t ≥ c′
η


√
∥p≤I∥r
n

+
∥p>I∥

2−t
t

1

n
2t−2
t

+
1
n

 ,

it holds that
Pq(ψ = 0) ≤ η/2.

2.6.1 Remarks on the tests

In the bulk tests, we propose test statistics based on sample splitting, whose variance is easier to
express. However, those tests could be defined slightly differently without sample splitting, allowing
also for the analysis of the case n = 1. Denoting by H the histogram of the data, we could define

T̃Bulk =
∑
j≤A

1
pbj

[(
Hj

n
− pj

)2
−Hj

]

and the associated test:
ψ̃bulk = 1{T̃bulk >

cη
n
∥p≤A∥

r
2
r }.

This test attains the same upper bound in terms of separation distance - up to multiplicative con-
stants depending on η - as the bulk test we define in Equation (2.10), and is therefore also optimal
in the bulk regime.
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To understand the interpolation between the extreme cases t = 1 and t = 2, an important remark
is that the tail tests ψ1 and ψ2 do not capture the same signals. Under the alternative hypothesis,
the test ψ1 checks that the total mass of the tail coefficients ∥q>A∥1 is not to far away from
∥p>A∥1. As to test ψ2, on the tail, that is, on a set for which ∑N

j>A n
2p2
j ≪ 1, it is actually

equivalent to using a test for the second order moment. In other words, the test ψ2 is equivalent
to ψ̃2 = 1{|T2| >

cη
n ∥p>A∥2} for a small constant cη, where

T2 =
∑
i>A

(
Si
k
− pi

)(
S′
i

k
− pi

)
.

Therefore, the test ψ2 checks that the second order moment of the tail of distribution q>A is not
too different from that of p>A, in other words, that it does not contain much greater coefficients
than the corresponding values of p>A.

2.7 Further remarks on the results

2.7.1 Influence of the ℓt norm

In this paper, we consider the separation distance in all ℓt norms for t ∈ [1, 2]. The choice of t
influences the minimax separation distance.
In the extreme case t = 2, the minimax separation distance reduces to: ρ∗ ≍η

√
∥p≤I∥2
n + 1

n , which
can be further simplified as:

ρ∗ ≍η

√
∥p∥2
n

+
1
n

.

Indeed, by definition of I: ∥p>I∥2 ≲η
1
n . This case has already been solved in [66]. In this case, as

discussed earlier, a simple χ2 test would suffice for reaching this separation distance, and p would
only appear in the definition of the threshold of this test. Here we therefore do not need to combine
a bulk with a tail test. A single χ2 test, applied on both the bulk and the tail (i.e. setting A = N),
would suffice.

We now consider the opposite extreme case t = 1. In this case

ρ∗ ≍η

√
∥p≤I∥2/3

n
+ ∥p>A∥1 +

1
n

.

In the minimax separation distance, the contribution of the Bulk coefficients involves the ℓ2/3 quasi-
norm - as in [95]. In terms of test statistic, this is reflected by the fact that the optimal Bulk test is
based on a re-weighted χ2 test statistic whose weights depend on p. For each entry j, the optimal
weight is larger when pj is small: indeed, for small pj , coordinate j has smaller variance. This
re-weighting differs from the extreme case t = 2, since, compared to the ℓ2 norm, the ℓ1 norm lays
more emphasis on smaller entries of the perturbation p− q. As to the tail coefficients, however,
the big picture is simpler as the minimax rate with respect to the tail coefficients is ∥p>A∥1, which
is very large. This rate implies in particular that only the total mass of the perturbations of the
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tail coefficients matters. We therefore do not need to use the test ψ2, which is tailored to detect
extreme values of the perturbations, and can only restrict to using ψ1 when it comes to the tail
coefficients.

Between the two extreme cases, that is, for t ∈ (1, 2), we have an interpolation between the two
extreme scenarios. When it comes to the bulk, we need to re-weight the test statistics by weights
that increase with pi for entry i as in the case t = 1. But the larger t, the milder the reweighting
- as the ℓt norm puts more weight on large coefficients - until it vanishes for t = 2. As for the
tail, both tests ψ1 and ψ2 are required in this intermediate regime. Indeed, we need to control
both the mass of the tail perturbations like for t = 1, but also their extreme values like for t = 2.
Note that [75] had already considered the global problem of ℓt testing for discrete distributions and
identified (non-matching) upper and lower bounds.

For t > 2, the underlying phenomenon is fundamentally different. In this case, the ℓt norm empha-
sizes so much the large deviations that re-weighted χ2 tests - that are related to re-weighted second
order moment estimation - seem to be sub-optimal for testing. We leave the case t > 2 as an open
problem.

In the minimax separation distance in ℓt norm, the bulk part
√

∥p≤I∥r
n involves a duality between

the norms ℓt and ℓr for r = 2t
4−t - as was also the case for t = 1 in [95]. This phenomenon comes from

a combination of Hölder’s inequality and information theory. Define γ = (γ1, . . . , γA) ∈ [0, 1]A,
and define the random vector q = (p1 + δ1γ1, · · · , pA + δAγA) for δi iid∼ Rad( 1

2 ) like in (2.7), except
that this time, we do not impose that (γi)i is defined as in (2.8). Introduce

Γ :=

(γ1, . . . , γA) ∈ [0, 1]A :
A∑
i=1

γ4
i

p2
i

≤ Cγ
n2 ; pi − γi ∈ [0, 1], pi + γi ∈ [0, 1]

 ,

where Cγ is a small enough constant depending only on η. Then by Lemma 4 in the Appendix,
whenever γ ∈ Γ, the n samples‡ generated from the random vector q have a probability distribution
indistinguishable from the null hypothesis p. The largest γ ∈ Γ, when measured in ℓt, therefore
provides a lower bound on the minimax separation radius. It is found by solving: maxγ∈Γ

∑A
i=1 γ

t
i ,

which can be done using Hölder’s inequality:

A∑
i=1

γti =
A∑
i=1

(
γ4
i

p2
i

)t/4

pt/2
i ≤

Hölder

 A∑
i=1

γ4
i

p2
i

t/4 A∑
i=1

pri

(4−t)/4

≤
(
Cγ
n2

)t/4

∥p∥1/2t
r ,

where we have used Hölder’s inequality with a = 4
t and b = 4

4−t . Setting γ∗ the vector on the frontier
of Γ reaching the equality case in Hölder’s inequality, we obtain for fixed n: ∥γ∗∥t ∝ ∥p∥1/2

r .
As to the contribution of the tail, we refer the reader to the remarks below Proposition 2.2.

‡Although the proof is written for graph samples, it is argued in Subsection 2.3.1 that it can be transposed to
the multinomial or the Poisson settings.
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2.7.2 Asymptotics as n→∞

Consider now p as being a fixed multinomial distribution, or a fixed vector of Poisson parameters.
Then by the definitions of A and I, there exists an integer n0 such that for all n ≥ n0, we have
I = A = N . In words, we eventually no longer need to split the distribution into bulk and tail
and we can define the bulk as the whole set of coefficients. For n large enough (n ≥ n0), the local
minimax rate therefore rewrites:

ρ∗(p,n) ≍
n→∞


√
∥p− max∥

r
n + 1

n in the multinomial case√
∥p∥r
n + 1

n in the binomial or Poisson case.

On the other hand the fast rate 1
n asymptotically dominates if p is close to a Dirac multinomial

distribution in the multinomial setting, or if e.g. p = 0 in the binomial and Poisson setting.
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Appendix

2.A Lower bound
Let p ∈ PN . For P1 := P1(ρ) a particular collection of elements of PN satisfying H1,ρ we denote
by U(P1) the uniform distribution over P1.
Let G =

(
{0, 1}N

)n
be the set of all possible observations (X1, . . . ,Xn) whereXi = (Xi(1), . . . ,Xi(N)).

The following lemma gives a way to derive a lower bound on ρ∗ by giving a sufficient condition, for
a fixed ρ, that R∗(ρ) ≥ η:

Lemma 3. If

1
|G|

∑
X∈G

(
Eq∼U(P1)Pq(X)

)2

Pp(X)
≤ 1 + 4(1− η)2,

Then R∗(ρ) ≥ η.

Proof of Lemma 3. We have that:

R∗(ρ) ≥ inf
ψ test

Pp(ψ = 1) + sup
q∈P1

Pq(ψ = 0) (all elements of P1 satisfy H1)

≥ inf
ψ test

Pp(ψ = 1) + Eq∼U(P1)Pq(ψ = 0) (the supremum is greater than the integral)

= 1 + inf
ψ test

Pp(ψ = 1)−Eq∼U(P1)Pq(ψ = 1)

= 1− sup
ψ test

∣∣∣Pp(ψ = 1)−Eq∼U(P1)Pq(ψ = 1)
∣∣∣

= 1− dTV (Pp, Eq∼U(P1)Pq)

≥ 1− 1
2
√
χ2(Eq∼U(P1)Pq || Pp),

where the definition of the χ2 divergence can be found in [188], as well as the proof for the inequality
dTV ≤ 1

2
√
χ2. Therefore:

R∗(ρ) ≥ 1− 1
2
√
χ2(Eq∼U(P1)Pq || Pp)

= 1− 1
2

√√√√√ 1
|G|

∑
X∈G

(
Eq∼U(P1)Pq(X)

)2

Pp(X)
− 1

Therefore, to have R∗(ρ) ≥ η it suffices that

1
|G|

∑
X∈G

(
Eq∼U(P1)Pq(X)

)2

Pp(X)
≤ 1 + 4(1− η)2.
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For all i = 1, · · · ,N , let γi ∈ [0, pi] and let γ = (γi)i. We now apply the previous lemma with

P1 =
{
p+ (δiγi)i≤N | δ ∈ {±1}N

}
.

Lemma 4. There exists a sufficiently small absolute constant c4 such that, if
N∑
i=1

γ4
i

p2
i
≤ c4

n2 , then

for all ρ ≤ ∥γ∥t we have R∗(ρ) ≥ η.

Proof. We will use Lemma 3 with p and P1 defined as above.

• We first compute Pq(X) for some realization X ∈ G. Let S =
∑n
i=1Xi ∈ {0, . . . ,n}N and

write S = (s1, . . . , sN ). We have that

Pp(X) =
N∏
i=1

psii (1− pi)n−si

• We now compute Eq∼U(P1)Pq(X): for any (δi)i ∈ {±1}N , we define qδ = p+ (δiγi)1≤i≤N .
Then we have:

Pqδ (X) =
N∏
i=1

(pi + δiγi)
si(1− pi − δiγi)n−si

Therefore we have:

1
|G|

∑
X∈G

(
Eq∼U(P1)Pq(X)

)2

Pp(X)
=

1
|G|

∑
X∈G

∑
δ,δ′

N∏
i=1

(pi + δiγi)si(1− pi − δiγi)n−si

psii (1− pi)n−si

× (pi + δ′
iγi)

si(1− pi − δ′
iγi)

n−si

=
1
|G|

∑
δ,δ′

N∏
i=1

n∑
l=0

(
n

l

)(
pi + (δi + δ′

i)γi +
δiδ

′
iγ

2
i

pi

)l (
1− pi − (δi + δ′

i)γi +
δiδ

′
iγ

2
i

1− pi

)n−l

=
1
|G|

∑
δ,δ′

N∏
i=1

(
1 + δiδ

′
iγ

2
i

pi(1− pi)

)n
=

N∏
i=1

1
4

∑
δi,δ′

i∈{±1}

(
1 + δiδ

′
iγ

2
i

pi(1− pi)

)n

=
N∏
i=1

1
2

(
1 + γ2

i

pi(1− pi)

)n
+

1
2

(
1− γ2

i

pi(1− pi)

)n
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≤
N∏
i=1

1
2 exp

(
nγ2

i

pi(1− pi)

)
+

1
2 exp

(
−nγ2

i

pi(1− pi)

)

=
N∏
i=1

cosh
(

nγ2
i

pi(1− pi)

)
≤ exp

 N∑
i=1

n2γ4
i

2p2
i (1− pi)2


Note that

exp

 N∑
i=1

n2γ4
i

2p2
i (1− pi)2

 ≤ 1 + 4(1− η)2

⇐⇒
N∑
i=1

γ4
i

p2
i (1− pi)2 ≤

2c4
A

n2

⇐=
N∑
i=1

γ4
i

p2
i

≤ c4
A

2n2 (1)

where c4
A := log

(
1 + 4(1− η)2

)
and since ∀ i : pi ≤ 1

2 . The result follows by Lemma 3.

This means the following: let γ := (γi)i satisfying (1) and let ρ = ∥γ∥t. Then all points p +
(δiγi)1≤i≤|G| are located at a distance ρ from p in terms of ℓt norm - so that the corresponding
adjacency matrices are at a distance ρ from each other in ℓt norm. Moreover we proved that for
the uniform prior on this set of points P1, we have R∗(ρ) ≥ η, which yields ρ∗ ≥ ρ.

We now prove the lower bound by combining Lemmas 5-10.

Lemma 5. It holds that

ρ∗
t ≳η ρ1 :=

∥p≤A∥
r
t
r

√
n∥p≤I∥

r
4
r

.

Proof of Lemma 5. For a small enough constant cA depending only on η, we define the quantity

a =
cA

√
n
(∑

i≤I p
r
i

) 1
4

(2.13)

For all δ ∈ {±1}A let qδ = ((qδ)i)i=1,··· ,N such that

• ∀i ≤ A , (qδ)i = pi + aδip
2

4−t
i where a is defined in (2.13)

• ∀i > A , (qδ)i = pi.
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Let P1 =
{
qδ | δ ∈ {±1}A

}
. We set a uniform prior on P1. With the notation of Lemma 4, we just

set γi = ap
2

4−t
i if i ≤ A and 0 otherwise. In terms of ∥·∥t norm, any distribution where this prior

puts mass is separated from p with a distance ρ such that:

ρ = a

∥∥∥∥∥∥
(
p

2
4−t
i

)
i=1,··· ,A

∥∥∥∥∥∥
t

=
cA

√
n
(∑

i≤I p
r
i

) 1
4

∑
i≤A

pri

 1
t

≍η
∥p≤A∥

r
t
r

√
n∥p≤I∥

r
4
r

= ρ1.

According to Lemma 4, taking c4
A ≤ c4 this prior gives a minimax risk greater than η since

∑
i≤A

γ4
i

p2
i

≤ a4 ∑
i≤A

p
8

4−t−2
i =

c4
A

n2 ≤
c4
n2 .

Lemma 6. Assume that ∥p>I∥1 ≥ 1
n . Then it holds that

ρ∗
t ≳η ρ2 :=

∥p≥I∥
2−t
t

1

n
2t−2
t

.

Proof of Lemma 6. We divide the proof in two steps. In the first step, we prove that the prior
concentrates with high probability on a zone located at ∥p≥U∥(2−t)/t

1
n(2t−2)/t + 1

n , up to a multiplicative
constant. In the second step, we prove that the prior is indistinguishable from the null hypothesis
p, by proving that the total variation between p and this prior is small.

FIRST STEP: We prove that the prior concentrates with high probability on a zone located at
∥p≥U∥(2−t)/t

1
n(2t−2)/t + 1

n , up to a multiplicative constant. By assumption we have ∥p>I∥1 ≥ 1
n .

Let U be the smallest index greater than or equal to A such that n2pU∥p≥U∥1 ≤ cu where
cu = η

10 ∧
1
2 (1− η)2

Let
π̄ =

cu
n2∥p≥U∥1

and πi =
pi
π̄

.

We set the following sparse prior: for all i < U we set qi = pi and for all i ≥ U we draw bi ∼ B(πi)
mutually independent, and we define qi = biπ̄. We write q = (qi)i for the corresponding distribu-
tion parameter and Q for the prior distribution.

Before showing that the data distribution coming from this prior - namely Eq∼QPq - is close enough
to Pπ in total variation, we first prove that q ∼ Q is such that ∥q − p∥t is with high probability
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larger - up to a positive multiplicative constant that depends only on u - than ρ2. We have

Eq∼Q
[
∥p− q∥tt

]
= E(bi)i∼⊗B(πi)

∑
i≥U
|biπ̄− pi|t


= π̄tE(bi)i∼⊗B(πi)

∑
i≥U
|bi − πi|t


= π̄t

∑
i≥U

πi(1− πi)t + (1− πi)πti ≥ 4−1π̄t
∑
i≥U

πi + πti

≥ 4−1π̄t
∑
i≥U

πi,

since ∀i ≥ U , πi ≤ cu ≤ 1
2 , and

Vq∼Q
[
∥p− q∥tt

]
= π̄2t∑

i≥U
Vbi∼B(πi)|bi − πi|

t = π̄2t∑
i≥U

πi(1− πi)
[
(1− πi)t − πti

]2
≤ π̄2t∑

i≥U
πi.

We now show that
[
Eq∼Q

[
∥p− q∥tt

]]2
≫ Vq∼Q

[
∥p− q∥tt

]
. This is equivalent to proving∑i≥U πi ≫

1, or equivalently: n2∥p≥U∥21 ≫ cu.

By Lemma 8, we are necessarily in the case ∥p≥U∥1 ≥ 1
3∥p>I∥1. Indeed, suppose that ∥p≥U∥1 <

1
3∥p>I∥1, then by Lemma 8 we would have

∥p>I∥1 ≤ ∥p≥U∥1 +
√
cI
n

≤ 1
3∥p>I∥1 +

√
cI
n

,

hence ∥p>I∥1 ≤ 3
2

√
cI
n , which is excluded because we assume ∥p>I∥1 ≥ 1

n .
Therefore, ∥p≥U∥21n2 ≥ 1

9 ≫ cu. We conclude using Chebyshev’s inequality. Therefore, this prior
is indeed separated away from the null distribution by a distance greater than π̄

∑
i≥U πi up to a

constant, or equivalently, greater than ∥p≥U∥
2−t
t

1

n
2(t−1)
t

.

SECOND STEP: We now show that this prior is indistinguishable from p, i.e. that that is has a
Bayes risk strictly greater than η. We denote by P̄tail = Eq∼Q

[
Pq
]
, the prior distribution used to

lower bound the minimax risk. We always have:

R∗ ≥ 1− dTV
(

Pp, P̄tail
)

.
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Moreover, we recall that for any realization X = (X1, . . . ,Xn) we write S =
∑n
i=1Xi. We have

dTV
(

Pp, P̄tail
)
=

1
2
∑
X∈G

∣∣∣Pp(X)− P̄tail(X)
∣∣∣

=
1
2

∑
X∈G:∀i≥U ,si≤1

∣∣∣Pp(X)− P̄tail(X)
∣∣∣ +

1
2

∑
X∈G:∃i≥U , s.t. si≥2

∣∣∣Pp(X)− P̄tail(X)
∣∣∣ .

This allows us to split the total variation into two terms: The first one will be the principal term,
while the second one will be negligible. We first prove the negligibility of the second term.
We have - since s is a sufficient statistic∑

X∈G:∃i≥U , s.t. si≥2

∣∣∣Pp(X)− P̄tail(X)
∣∣∣ ≤ [Pp (∃i ≥ U ; si ≥ 2) + P̄tail (∃i ≥ U ; si ≥ 2)

]

≤
|G|∑
i=U

[
1−Pp(si = 0)−Pp(si = 1) + 1− P̄tail(si = 0)− P̄tail(si = 1)

]
.

Let’s fix i ∈ {U , · · · ,N}. We will use the following inequalities which hold for all n ∈N,x ∈ [0, 1]:

(1− x)n ≥ 1− nx; (1− x)n ≥ 1− nx+ n

4x
2; (1− x)n ≤ 1− nx+ n2

2 x
2.

First term in the sum:
∑N
i=U [1−Pp(si = 0)−Pp(si = 1)]. We recall that by the definition

of U , since U > I we have ∀i ≥ U npi ≤ cI so that for any i ≥ U

1−Pp(si = 0)−Pp(si = 1) = 1− (1− pi)n − npi(1− pi)n−1

≤ 1−
[
1− npi +

n

4 p
2
i

]
− npi

[
1− (n− 1)pi

]
≤ n2p2

i .

Summing over all i = U , · · · ,N yields that

N∑
i=U

[1−Pp(si = 0)−Pp(si = 1)] ≤ cI .

Second term in the sum:
∑N
i=U [1 − P̄tail(si = 0) − P̄tail(si = 1)]. We recall that by the

definition of U , since U > I we have ∀i ≥ U npi ≤ cI so that for any i ≥ U

1− P̄tail(si = 0)− P̄tail(si = 1) = 1−
[
1− πi + πi(1− π̄)n

]
− πinπ̄(1− π̄)n−1

= πi − πi(1− π̄)n − πinπ̄(1− π̄)n−1 ≤ πi − πi(1− nπ̄)− πinπ̄(1− (n− 1)π̄)

= n(n−−1)πiπ̄2 = n(n− 1)piπ̄ ≤ n2cu
pi

n2∥p≥U∥1
= cu

pi
∥p≥U∥1

64



CHAPTER 2. GOODNESS-OF-FIT TESTING IN DISCRETE MODELS

Summing over all i = U , · · · ,N yields that

N∑
i=U

[1− P̄tail(si = 0)− P̄tail(si = 1)] ≤ cu
∥p≥U∥1
∥p≥U∥1

= cu.

Therefore
dTV

(
Pp, P̄tail

)
=

1
2

∑
X∈G:∀i≥U ,si≤1

∣∣∣Pp(X)− P̄tail(X)
∣∣∣

︸ ︷︷ ︸
principal term

+cI + cu (2.14)

Now, we can upper bound the total variation by the χ2 divergence on the high probability event
that we only observe 0 or 1 for each coordinate i ≥ U corresponding to the principal term. We
have - since s is a sufficient statistic∑

X∈G:∀i≥U ,si≤1

∣∣∣Pp(X)− P̄tail(X)
∣∣∣ (2.15)

≤

√√√√√ ∑
X∈G:∀i≥U ,si≤1

(
Pp(X)− P̄tail(X)

)2

Pp(X)

√√√√√√
∑

X∈G:∀i≥U ,si≤1
Pp(X)

︸ ︷︷ ︸
≤1

≤

√√√√ ∑
X∈G:∀i≥U ,si≤1

P̄tail(X)2

Pp(X)
− 1 + 2cu =

√√√√√ N∏
i=U

 1∑
j=0

P̄tail(si = j)2

Pp(si = j)

− 1 + 2cu. (2.16)

Computation of
∑1
k=0

P̄tail(si=k)
2

P(si=k)
. :

1∑
k=0

P̄tail(si = k)2

Pp(si = k)
=

[
1− πi + πi(1− π̄)n

]2
(1− pi)n

+

[
πinπ̄(1− π̄)n−1

]2
npi(1− pi)n−1

The first term writes:

[
1− πi + πi(1− π̄)n

]2
(1− pi)n

≤

[
1− πi + πi(1− nπ̄+ n2

2 π̄
2)
]2

1− npi

= 1− npi + n2piπ̄+

(
n2

2 piπ̄
)2

1− npi
≤ 1− npi + n2piπ̄+

n4p2
i π̄

2

4(1− cI)

≤ 1− npi + n2piπ̄+
c2
u

4(1− cI)
.

The second term writes:
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[
πinπ̄(1− π̄)n−1

]2
npi(1− pi)n−1 = npi

(1− π̄)2n−2

(1− pi)n−1 ≤ npi since π̄ ≥ pi

We can now sum the two terms:
1∑

k=0

P̄tail(si = k)2

Pp(si = k)
= 1 + n2piπ̄+

c2
u

4(1− cI)

So that

N∏
i=U

 1∑
k=0

P̄tail(si = k)2

Pp(si = k)

 =
N∏
k=U

(
1 + n2piπ̄+

c2
u

4(1− cI)

)

≤ exp
(
cu +

c2
u

1− cI

)
≤ exp 3

2cu ≤ 1 + 3cu since 3
2cu ≤ 1.

Now, using (2.14) and (2.16), we have: dTV (Pp, P̄tail) ≤ 1
2
√

5cu + cI + cu ≤ 1− η by the definition
of cu, cI . This concludes the proof.

Lemma 7. Assume that ∥p≥I∥1 ≤ 1
n . Then it holds that

ρ∗
t ≳ ρ3 :=

1
n

.

Proof of Lemma 7. We introduce q such that q1 = p1 +
1−η
n and qj = pj for all j ≥ 2.

R∗ ≥ inf
ψtest

Pp(ψ = 1) + Pq(ψ = 0) = 1− dTV (Pp, Pq)

= 1− n dTV

⊗
i<j

B(pi),
⊗
i<j

B(qi)


= 1− n dTV

(
B(p1), B(q1)

)
= 1− n |p1 − q1| = 1− n 1− η

n
= η.

This concludes the proof.

Lemma 8. It holds : ∥p≥U∥1 + 1
n ≍ ∥p>I∥1 +

1
n .

Moreover, we either have ∥p≥U∥1 ≥ 1
3∥p>I∥1 or ∥p>I∥1 ≤ ∥p≥U∥1 +

√
cI
n
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Proof of lemma 8. If ∥p≥U∥1 ≥ 1
3∥p>I∥1 then the result is clear. Now, suppose ∥p≥U∥1 < 1

3∥p>I∥1.
We have ∥p≥U∥1 < 1

2∥PI→U∥ where PI→U = (pI+1, · · · , pU−1). We have:

p2
U−1 +

cI
2n2 ≥ p2

U−1 +
1
2

U−1∑
i=I+1

p2
i ≥ pU−1

pU−1 +
1
2

U−1∑
i=I+1

pi


> pU−1

pU−1 +
∑
i≥U

pi


≥ pU−1

∑
i≥U−1

pi = pU−1∥P≥U−1∥1 >
cu
n2

by the definition of U .

Therefore,
p2
U−1 >

2cu − cI
2n2 =⇒ ∀I < i < U , p2

i >
cI

2n2 since cu ≥ cI .

Moreover,

cI
n2 ≥

∑
I<i<U

p2
i > (I −U − 1)p2

U−1 > (I −U − 1) cI2n2

So that

I −U − 1 < 2 i.e. I −U − 1 ≤ 1

Thus:

∥p>I∥1 ≤ ∥PI→U∥1 + ∥p≥U∥1 ≤ (I −U − 1)pI+1 + ∥p≥U∥1

≤
√
cI
n

+ ∥p≥U∥1 ≲ ∥p≥U∥1 +
1
n

.

Hence the result.

Lemma 9. Let ρ1 and ρ2 be defined as in Lemmas 5 and 6. We have ρ1 + ρ2 ≍
√

∥p≤I∥r
n + ρ2.

Proof of Lemma 9. Clearly, ρ1 + ρ2 ≤
√

∥p≤I∥r
n + ρ2. To prove ρ1 + ρ2 ≳η

√
∥p≤I∥r
n + ρ2, there are

two cases.

• If A = I then the result is clear.

• Otherwise, I > A. Note that by setting p′
i := npi for all i = 1, · · · ,N , the result to show can

be rewritten as:
∥p′

≤A∥
r
t
r

∥p′
≤I∥

r
4
r

+ ∥p′
≥I∥2−t

1 ≍
√
∥p′

≤I∥r + ∥p
′
≥I∥2−t

1 . (2.17)
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We have by definition of A and I:

p′2−r
I

∑
i≥I

p′
i

2−r

=

∑
i≥I

p′
Ip

′
i

2−r

≥

∑
i≥I

p′2
i

2−r

≳η 1 and

p′ 2b
I

∑
i≤I

p′r
i ≤ p′ 2b

A+1
∑
i≤I

p′r
i ≤ c4

A ≍ 1 by definition of A.

Hence, by noticing that 2b = 2− r we have
(∑

i≥I p
′
i

)2−r
≳η

∑
i≤I p

′r
i , which yields ∥p′

≥I∥
2−t
1 ≥√

∥p′
≤I∥r ≥

∥p′
≤A∥

r
t
r

∥p′
≤I∥

r
4
r

by raising to the power 1
2r . This condition yields the result of the lemma,

by replacing p′ by np.

Lemma 10. ∥p>I∥1 + 1
n ≍ ∥p>A∥1 +

1
n .

Proof of lemma 10. If A = I then the result is clear. Now, suppose that A < I. We have, by the
definition of A:

c4
A

n2 > pA+ 12b∑
i≤I

pri ≥
I∑

i=A+1
p2
i ≥ pI

I∑
i=A+1

pi =⇒ c4
A

n2∑I
i=A+1 pi

≥ pI

Moreover if I < N ,
cI
n2 ≤

∑
i>I

p2
i ≤ pI+1

∑
i>I

pi =⇒ pI+1 ≥
cI

n2∑
i>I pi

So that

∑
i>I

pi ≥
cI
c4
A

I∑
i=A+1

pi

and consequently ∥p>I∥1 ≳ ∥p>A∥1 if we impose moreover that c4
A ≳ cI , which can be done wlog.

Now if I = N , we have ∥p>I∥1 = 0 and pN >
√
cI
n and

p2b
A+1 <

c4
A

n2∑N
i=1 p

r
i

=⇒
N∑

j=A+1
p2b
A+1p

r
j ≤

c4
A

n2

=⇒
N∑

j=A+1
p2
j ≤

c4
A

n2

=⇒ PN∥p>A∥1 ≤
c4
A

n2
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=⇒
√
cI
n
∥p>A∥1 ≤

c4
A

n2

hence ∥p>A∥1 ≲ 1
n so that ∥p>A∥1 + 1

n ≍ ∥p>I∥1 +
1
n ≍

1
n

2.B Upper bound
Define ∆ = q − p. In the following, c > 0 denotes an absolute constant, depending only on η. We
call

ρ =

√
∥p≤I∥r
n

+
∥p>A∥

2−t
t

1

n
2−2t
t

+
1
n

,

and we prove: ρ∗ ≲η ρ.
We start with the three following lemmas which control the expectation and variance of the statistics
Tbulk,T1,T2. We recall that k = n

2 .

Lemma 11 (Bounds on expectation and variance of Tbulk). Let Tbulk be defined as in equa-
tion (2.10). The expectation and variance of Tbulk satisfy:

E [Tbulk] =
∑
i≤A

∆2
i

pbi
,

V[Tbulk] ≤
∑
i≤A

1
p2b
i

(
q2
i

k2 +
2
k
qi∆2

i

)
.

Lemma 12 (Bounds on expectation and variance of T1). Let T1 be defined as in equation (2.12).
The expectation and variance of T1 satisfy:

E [T1] =
∑
i>A

qi − pi,

V[T1] ≤
∑
i>A

qi
n

.

We then study the null and alternative hypotheses in the following subsection, bounding the prob-
ability of error of the test ψ.

2.B.1 Under the null hypothesis H0.

We start by assuming that p = q. We recall that cη = 4√
η .
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Test ψbulk. Moreover, for the bulk, since p = q, we have by lemma 11: E[Tbulk] = 0 and
V[Tbulk] =

∑
i≤A

pri
n2 . Therefore by Chebyshev’s inequality:

P

Tbulk > cη

√√√√∑
i≤A

pri
n2

 ≤ η

16

so that:
P (ψbulk = 1) ≤ η

16, (2.18)

Test ψ1. Since p = q, we have by Lemma 12 that E(T1) = 0 and V(T1) ≤
√∑

i>A
pi

n .
By the same argument ψ1’s type-I error is upper bounded as:

Pp (ψ1 = 1) = Pp

T1 > cη

√∑
i>A pi
n

 ≤ 1
c2
η

=
η

16,

so that by definition of ψ1
Pp (ψ1 = 1) ≤ η

16, (2.19)

Test ψ2. We have by Lemmas 13 and 14

P (ψ2 = 1) ≤ cI + c4
A ≤

η

16, (2.20)

by choosing the constants cI and cA depending only on η sufficiently small.

Conclusion : Putting together equations (2.19), (2.18) and (2.20) we get that the type I error
of ψ = ψbulk ∨ψ1 ∨ψ2 is upper bounded as

P (ψ = 1) ≤
∑

i∈{bulk,1,2}
P (ψi = 1) ≤ 3η

16 < η/2.

2.B.2 Under the alternative hypothesis H1(ρ)

Suppose that for some constant c̄η > 0, we have ∥∆∥t ≥ 2c̄ηρ. By the triangle inequality, there are
two cases:

• First case: Either ∥∆≤A∥t ≥ c̄ηρ

• Second case: Or ∥∆>A∥t ≥ c̄ηρ

Proposition 2.5 (Study in the First case). There exists a large enough constant c̄(bulk)
η > 0 such

that if ∥∆≤A∥t ≥ c̄
(bulk)
η ρ, then

P(ψbulk = 1) ≥ 1− η/6.
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Proposition 2.6 (Study in the Second case). If ∥∆>A∥t ≥ cρ, then

P(ψ1 ∨ψ2 = 1) ≥ 1− 2η
3 .

Proof of Proposition 2.5. Suppose ∥∆≤A∥t ≥ cρ for some constant c. We show that if c is large
enough, then the test ψBulk will detect it. To do so, we compute a constant c′ depending on c such
that if ∥∆≤A∥t ≥ cρ, then V(TBulk) ≤ c′ E(TBulk)

2 and such that limc→+∞ c′ = 0.
By definition of ρ, we have in particular: ∥∆≤A∥t ≥ c

√
∥p≤I∥r
n ∨ c

n , hence

1
n2 ≤

1
c4
∥∆≤A∥4t
∥p≤I∥2r

∧ ∥∆≤A∥2t
c2 (2.21)

Using Lemma 11 we split V[Tbulk] into four terms

V[Tbulk] ≤
∑
i≤A

1
p2b
i

 (pi + ∆i)
2

n2 +
2
n
(pi + ∆i)∆2

i



≤ 2
n2
∑
i≤A

pri︸ ︷︷ ︸
1

+
2
n2
∑
i≤A

∆2
i

p2b
i︸ ︷︷ ︸

2

+
2
n

∑
i≤A

p1−2b
i ∆2

i︸ ︷︷ ︸
3

+
2
n

∑
i≤A

∆3
i

p2b
i︸ ︷︷ ︸

4

.

Now, we show that each of the four terms is less than E[Tbulk]
2, up to a constant

Term 1 : We have by Hölder’s inequality:

∑
i≤A

∆ti ≤

∑
i≤A

 ∆ti

p
bt
2
i


2
t


t
2 ∑

i≤A

(
p
bt
2
i

) 2
2−t


2−t

2

=

∑
i≤A

∆2
i

pbi

 t
2
∑
i≤A

pri

1− t
2

.

Hence ∥∆≤A∥t ≤

∑
i≤A

∆2
i

pbi

 1
2
∑
i≤A

pri


2−t
2t

. (2.22)

Moreover, we have 1
n2 ≤

∥∆≤A∥4
t

c4∥p≤I∥2
r

so that the term 1 writes:

2
n2
∑
i≤A

pri ≤ 2
∑
i≤A

pri

∑
i≤A

∆ti

 4
t 1

c4
(∑

i≤I p
r
i

) 2
r
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≤ 2
c4

∑
i≤A

pri

1− 2
r
∑
i≤A

∆2
i

pbi

2∑
i≤A

pri


4−2t
t

by (2.22)

=
2
c4

∑
i≤A

∆2
i

pbi

2

=
2
c4 E[Tbulk]

2. (2.23)

Term 2 : The condition a ≤ p
b
2
A ensures that:

pbA ≥ a2 =
c2
A√

2(∑j≤I p
r
j)

1/2n
=: c̃

1
(
∑
j≤I p

r
j)

1/2n
.

Using this condition, the term 2 writes:

∑
i≤A

1
p2b
i

∆2
i

n2 ≤
1
n2

1
pbA

∑
i≤A

∆2
i

pbi
≤ c̃−1 1

n

∑
j≤I

prj

 1
2
∑
i≤A

∆2
i

pbi

 . (2.24)

Moreover, since
√

∥p≤I∥r
n ≤ ρ ≤ 1

c∥∆≤A∥t we have, using (2.22):

1
n

∑
j≤I

prj

 1
2

=
1
nb

√∥p≤I∥r
n

r ≤ 1
nbcr

∑
i≤A

∆2
i

pbi

 r
2
∑
i≤A

pri

 b
2

≤ 1
c2
∑
i≤A

∆2
i

pbi
. (2.25)

In the last inequality, we use the fact proved in case number 1 that 1
nb

(∑
i≤A p

r
i

) b
2 ≤ 1

c2bE[Tbulk]
b

and the relation r
2 + b = 1

Plugging in (2.24) yields that the second term 2 is bounded by E[Tbulk]
2

Term 3 : This term writes:

1
n

∑
i≤A

p1−2b
i ∆2

i ≤
∥∆≤A∥2t

c2
(∑

i≤I p
r
i

) 1
r

∑
i≤A

p1−2b
i ∆2

i

≤ 1
c2

∑
i≤A

∆2
i

pbi

∑
i≤A

pri


4−2t

2t − 1
r ∑
i≤A

p1−2b
i ∆2

i using (2.22)

≤ 1
c2

∑
i≤A

∆2
i

pbi

∑
i≤A

pri


−1
2
∑
i≤A

p
2
3 (1−2b)
i ∆

4
3
i

 3
2

since ∥·∥1 ≤ ∥·∥ 2
3
.
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Moreover, by Hölder’s inequality with 1
3
2
+ 1

3 = 1:

∑
i≤A

p
2
3 (1−2b)
i ∆

4
3
i ≤

∑
i≤A

p 2
3 (1−2b)
i ∆

4
3
i

p
2
3

t
4−t

i


3
2


2
3 ∑

i≤A

(
p

2
3

t
4−t

i

)3
 1

3

≤

∑
i≤A

∆2
i

pbi

 2
3
∑
i≤A

pri

 1
3

.

So that ∑
i≤A

p
2
3 (1−2b)
i ∆

4
3
i

 3
2

≤

∑
i≤A

∆2
i

pbi

∑
i≤A

pri

 1
2

ie

∑
i≤I

pri


−1
2
∑
i≤A

p
2
3 (1−2b)
i ∆

4
3
i

 3
2

≤

∑
i≤A

∆2
i

pbi

 .

This yields that the third term satisfies:

1
n

∑
i≤A

p1−2b
i ∆2

i ≤
1
c2

∑
i≤A

∆2
i

pbi

2

=
1
c2 E[Tbulk]

2.

Term 4 : The fourth term writes:

1
n
∥

|∆i|
p

2b
3
i


i≤A

∥33 ≤
1
n
∥

|∆i|
p

2b
3
i


i≤A

∥32 =
1
n

∑
i≤A

∆2
i

p
4b
3
i


3
2

≤ 1
n

1
2

∑
i≤A

∆2
i

pbi

 3
2
∑
i≤I

pri

 1
4

,

where in the last step we have used the fact that

p
b
3
i ≥

1(∑
i≤I p

r
i

) 1
6 n

1
3

.

Then using (2.24):

1√
n

∑
i≤I

pri

 1
4

≲

∑
i≤A

∆2
i

pbi

 1
2

.

So the term 4 is upper-bounded by 1
c2 E[Tbulk]

2.
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Conclusion By Chebyshev’s inequality, the type-II error of ψBulk is bounded as

P (ψBulk = 0) = P

(
TBulk ≤

cη
n
∥p≤A∥

r
2
r

)
= P

(
E(TBulk)− TBulk ≥ E(TBulk)−

cη
n
∥p≤A∥

r
2
r

)
≤ P

(∣∣E(TBulk)− TBulk
∣∣ ≥ E(TBulk)−

cη
n
∥p≤A∥

r
2
r

)
≤ V(TBulk)(

E(TBulk)−
cη
n ∥p≤A∥

r
2
r

)2 by Chebyshev’s inequality

≤ c′E(TBulk)
2(

E(TBulk)−
cη
n ∥p≤A∥

r
2
r

)2 .

Moreover, using (2.23), we have that for c large enough, E(TBulk) ≥ c
n∥p≤A∥

r
2
r ≥ 2 cηn ∥p≤A∥

r
2
r so

that the denominator is well defined. Finally, since limc→+∞ c′ = 0, the type-II error of this test
goes to 0 as c goes to infinity, so for c large enough, the type-II error is upper-bounded by η/6

We now move to the proof of Proposition 2.6

Proof of Proposition 2.6. We will need the two following lemmas:

Lemma 13. It holds by definition of A that: ∥p>A∥22 ≤ CA
n2 for CA = c4

A + cI .

Proof of lemma 13. If A = I then the result is clear, by definition of I. Otherwise, by definition of
A :

p2b
A+1

∑
i≤I

pri <
c4
A

n2 =⇒ p2b
A+1

I∑
i=A+1

pri <
c4
A

n2 =⇒
I∑

i=A+1
p2
i <

c4
A

n2 =⇒
∑
i>A

p2
i <

c4
A + cI
n2 .

Lemma 14. For fixed j > A, the probability that coordinate j is observed at least twice is upper-
bounded by n2p2

j .

Proof of lemma 14. The probability that coordinate j is observed at least twice is

1− (1− pj)n − npj(1− pj)n−1 ≤ 1− (1− npj)− npj [1− (n− 1)pj ] ≤ n2p2
j

Under H0: We upper bound the type-I error of tests ψ1 and ψ2. For ψ2: by Lemma 13, P(ψ2 =
1) ≤∑j>A n

2p2
j ≤ CA ≤

η
4 .
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As to test ψ1: P(ψ1 = 1) = P(|T1| > cη

√∑
i>A

pi
n ) ≤ η

4 by Chebyshev’s inequality. By union
bound, the type-I error of ψ1 ∨ψ2 is less than η/2.

Under H1: If ∥∆>A∥t ≥ cρ, we now show that either ψ1 or ψ2 will detect it. Until the end of
the proof, we drop from now on the indexation “> A” and write only e.g. ∥p∥2, ∥∆∥2
instead of ∥p>A∥2, ∥∆>A∥2.

We have by Hölder’s inequality:

∥∆∥2(t−1)
2 ∥∆∥2−t

1 ≥ ∥∆∥tt ≥ C
(
∥p∥2−t

1
n2t−2 +

1
nt

)
= C

1
n2t−2

(
∥p∥2−t

1 +
1

n2−t

)

for C = C1C2 where C1 =

((
20
η (cη + 1) + 1

))2−t
,

C2 =

(
1
4

(
log(4/η)2 ∨ 9/100

)
+ cI

)(t−1)/2
so that one of the two relations must hold:

∥∆∥2(t−1)
2 ≥ C2

1
n2t−2 or ∥∆∥2−t

1 ≥ C1

(
∥p∥2−t

1 +
1

n2−t

)

• First case: ∥∆∥2(t−1)
2 ≥ C2/n2t−2. Then ∥∆∥2 ≥ C

1/2(t−1)
2 /n so that ∥q∥2 ≥ C

1/(t−1)
2 /n−

∥p∥2 ≥ 1
n

(
C

1/(t−1)
2 − cI

)
.

ψ2 accepts if, and only if, all coordinates are observed at most once. This probability corre-
sponds to:

q(∀j > A,Nj = 0 or Nj = 1) =
∏
j>A

[
(1− qj)n + nqj(1− qj)n−1

]
=
∏
j>A

(1− qj)n−1(1 + (n− 1)qj)

=
∏
j>A

(1− qj)n
′
(1 + n′qj), writing n′ = n− 1

Let I− = {j > A : nqj ≤ 1
2} and I+ = {j > A : nqj > 1

2}. Recall that for x ∈ (0, 1/2], log(1+
x) ≤ x− x2/3. Then, for j ∈ I−:

(1− qj)n
′
(1 + n′qj) = exp

{
n′ log(1− qj) + log(1 + n′qj)

}
≤ exp

{
−n′qj + n′qj −

n′ 2q2
j

3

}

= exp
(
−
n′ 2q2

j

3

)
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Now, for j ∈ I+, we have: n′ log(1− qj) + log(1 + n′qj)
≤ −n′qj + log(1 + n′qj) ≤ − 1

10n
′qj using the inequality −0.9x+ log(1 + x) ≤ 0 true for all

x ≥ 1
2 . Therefore, we have upper bounded the type-II error of ψ2 by:

q(ψ = 0) ≤ exp

−1
3
∑
j∈I−

n′ 2q2
j −

1
10

∑
j∈I+

n′qj


≤ exp

−1
3
∑
j∈I−

n′ 2q2
j −

1
10

∑
j∈I+

n′ 2q2
j

1/2


= exp
(
−1

3 (S − S+)−
1
10 (S+)

1/2
)

for S =
∑
j>A

n′ 2q2
j and S+ =

∑
j∈I+

n′ 2q2
j .

Now, S+ 7→ −S
3 + 1

3S+ −
√
S+

10 is convex over [0,S] so its maximum is reached on the bound-
aries of the domain and is therefore equal to (−

√
S

10 )∨−
S
3 = −

√
S

10 for S ≥ 9/100. Now, since

since ∥q∥22 ≥
C

2/(t−1)
2
n2 ≥ 4C

2/(t−1)
2
n′ 2 , we have S = n′ 2∥q∥22 ≥ log(4/η)2 ∨ 9/100 which ensures

q(ψ2 = 0) ≤ η/4.

• Second case: ∥∆∥2−t
1 ≥ C1

(
∥p∥2−t

1 + 1
n2−t

)
. Then

∥∆∥1 ≥ C
1/(2−t)
1

(
∥p∥1 ∨ 1

n

)
≥ C

1/(2−t)
1

2

(
∥p∥1 + 1

n

)
. We will need the following lemma:

Lemma 15. If
∑
j>A ∆j ≥ 3∑j>A pj then

∣∣∣∑j>A ∆j
∣∣∣ ≥ 1

2∥∆∥1

Proof. Define J+ = {j > A : qj ≥ pj} and J− = {qj < pj}. Define also:

s =

∑
j>A ∆j∑
j>A pj

, s+ =

∑
j∈J+ ∆j∑
j>A pj

, s− = −
∑
j∈J− ∆j∑
j>A pj

Then by assumption: s+ − s− = s ≥ 3. Moreover, s− =

∑
j∈J−

pj−qj∑
j>A

pj
≤ 1. Thus, s+ ≥ 3 ≥

3s− so that 2(s+ − s−) ≥ s+ + s−, which yields the result.

Note that by definition of the second case, we have for some constant C that C∥p∥1 ≤
∥∆∥1 ≤ ∥q∥1 + ∥p∥1, hence that ∥q∥1 ≥ (C − 1)∥p∥1 and therefore taking C ≥ 5 ensures that
the assumption of Lemma 15 are met.
We can now upper bound the type-II error of ψ1:

q(ψ1 = 0) = q

(∣∣∣ ∑
j>A

Nj

n
− pj

∣∣∣ ≤ cη
√
∥p∥1
n

)
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≤ q
(∣∣∣ ∑

j>A

qj − pj
∣∣∣− ∣∣∣ ∑

j>A

Nj

n
− qj

∣∣∣ ≤ cη
√
∥p∥1
n

)
by triangular inequality

≤ q
(1

2∥q− p∥1 − cη

√
∥p∥1
n
≤
∣∣∣ ∑
j>A

Nj

n
− qj

∣∣∣) by Lemma 15

≤
1
n

∑
j>A qj(

1
2∥q− p∥1 − cη

√
∥p∥1
n

)2 by Chebyshev’s inequality

≤ ∥q∥1/n(
1
2∥q∥1 −

1
2∥p∥1 − cη

√
∥p∥1
n

)2 by triangular inequality

≤ ∥q∥1/n(
1
2∥q∥1 −

1
2∥p∥1 − cη(∥p∥1 + 1/n)

)2 using √xy ≤ x+ y

≤ ∥q∥1/n(
1
2∥q∥1 − (cη + 1)(∥p∥1 + 1/n)

)2 .

Now set z = (cη + 1)(∥p∥1 + 1/n). The function f : x 7→ x
n(x/2−z)2 is decreasing. Moreover,

for x ≥ 20z/η, we have:

f(x) ≤ 20z/η
n(10z/η− z)2 =

20η
nz(10− η)2 ≤

nz≤1

20η
81 ≤ η/4

which proves that, whenever ∥q∥1 ≥ 20
η (cη + 1)(∥p∥1 + 1/n), we have q(ψ1 = 0) ≤ η/4. This

condition is guaranteed when ∥∆∥1 ≥
(

20
η (cη + 1) + 1

)
(∥p∥1 + 1/n) = C

1/(2−t)
1 (∥p∥1 + 1/n)

Proof of lemma 11. • Expectation:

E [Tbulk] =
∑
i≤A

1
pbi

E

[
Si
k
− pi

]
E

[
S′
i

k
− pi

]
=
∑
i≤A

1
pbi

(pi − qi)2 .

• Variance:

V(Tbulk) =
∑
i≤A

1
p2b
i

E

(Si
k
− pi

)2(
S′
i

k
− pi

)2
−E

(Si
k
− pi

)(
S′
i

k
− pi

)2

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=
∑
i≤A

1
p2b
i

E

(Si
k
− pi

)2
2

− (pi − qi)4

 ,

since the (Si,S′
i)i are independent. And so by a bias-variance decomposition, and since

Si,S′
i ∼ B(k, qi)

V(Tbulk) =
∑
i≤A

1
p2b
i


V

(
Si
k

)
+ E

(Si
k
− pi

)2


2

− (pi − qi)4


=
∑
i≤A

1
p2b
i

[qi(1− qi)
k

+ (pi − qi)2
]2

− (pi − qi)4


=
∑
i≤A

1
p2b
i

(
q2
i (1− qi)2

k2 +
2
k
qi(1− qi) (pi − qi)2

)

≤
∑
i≤A

1
p2b
i

(
q2
i

k2 +
2
k
qi (pi − qi)2

)
.

Proof of lemma 12. We therefore have

E[T1] = E

∑
i>A

Si + S′
i

n
− pi

 =
∑
i>A

qi − pi,

and

V[T1] = V

∑
i>A

Si + S′
i

n

 =
∑
i>A

V [Si] + V [S′
i]

n2 by independence of the (Si,S′
i)i

=
∑
i>A

qi(1− qi)
n

≤
∑
i>A

qi
n

2.C Equivalence between the Binomial, Poisson and Multinomial
settings

We now prove that the rates for goodness of fit testing in the Binomial, Poisson and Multinomial
case are equivalent.
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Proof of Lemma 1. We first prove ρ∗
Poi(n, p) ≤ CBP ρ∗

Bin(n, p). Let n ≥ 2, and let Y1, · · · ,Yn iid∼
Poi(q). We consider a random function ϕ such that for any Poisson family Y1, · · · ,Yn iid∼ Poi(q),

ϕ(Y1, · · · ,Yn) = (X1, · · · ,Xñ)
iid∼ Ber(q) where ñ ∼ Poi(n) ⊥⊥ (Yi)i

∑ñ
i=1Xi =

∑n
i=1 Yi

In words, ϕ is a function which takes n Poisson random variables (or equivalently one Poisson
random variable Poi(nq)) and decomposes them into ñ ∼ Poi(n) Bernoulli iid random variables
whose sum is ∑n

i=1 Yi.

Let ñ ∼ Poi(n) be the random length of ϕ(Y1, · · · ,Yn). We can choose a small constant c = c(η)
such that the event:

A1 := {ñ ≥ cn}

has probability larger than 1− η/4. Moreover, for m ≥ cn we can define the function

π(x1, · · · ,xm) = (x1, · · · ,x⌊cn⌋)

Let ψBin be the test associated to the binomial testing problem:

H0 : q = p v.s. H1 : ∥p− q∥t ≥ ρBin(cn, p, η2 )

In particular, R(ψBin) ≤ η/2. Now, we define the test

ψ =


ψBin ◦ π ◦ ϕ if A1

0 otherwise

and we show that, when associated to the Poissonian testing problem

H0 : q = p v.s. H1 : ∥p− q∥t ≥ ρ

with ρ = ρBin(cn, p, η2 ), it has a risk less than η. We first analyse its type-I error.

PH0

(
ψ(Y n

1 ) = 1
)
≤ PH0

(
A1 ∩ψ(Y n

1 ) = 1
)
+ PH0(Ā1)

≤ PH0

(
ψ(Y n

1 ) = 1|A1
)
+
η

4
≤ PH0

(
ψBin(X1, · · · ,X⌊cn⌋) = 1|A1

)
+
η

4
= P

X
⌊cn⌋
1 ∼Ber(p)

⊗
⌊cn⌋

(
ψBin(X1, · · · ,X⌊cn⌋) = 1

)
+
η

4

For the Type-II error, the same steps show that for any vector q:

Pq
(
ψ(Y n

1 ) = 0
)
≤ P

X
⌊cn⌋
1 ∼Ber(q)

⊗
⌊cn⌋

(
ψBin(X1, · · · ,X⌊cn⌋) = 0

)
+
η

4
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We can now compute the risk of ψ when ρ = ρBin(cn, p, η2 ):

R(ψ) = PH0

(
ψ(Y n

1 ) = 1
)
+ sup

∥p−q∥t≥ρ
Pq
(
ψ(Y n

1 ) = 0
)

≤ η

2 + P
X

⌊cn⌋
1 ∼Ber(p)

⊗
⌊cn⌋

(
ψBin(X1, · · · ,X⌊cn⌋) = 1

)
+ sup

∥p−q∥t≥ρ
P
X

⌊cn⌋
1 ∼Ber(q)

⊗
⌊cn⌋

(
ψBin(X1, · · · ,X⌊cn⌋) = 0

)

=
η

2 +R(ψBin)

=
η

2 +
η

2 = η

This proves ρ∗
Poi(n, p) ≤ ρ∗

Bin(cn, p, η2 ) ≍ ρ∗
Bin(n, p, η).

We now show ρ∗
Poi(n, p) ≥ cBP ρ∗

Bin(n, p). Let X1, · · · ,Xn ∼ Ber(q) iid. For some small
constant c > 0 let ñ ∼ Poi(⌊cn⌋). We choose c > 0 such that

A2 = {ñ ≤ n} (2.26)

has probability larger than 1− η
4 . Consider the extended sequence of multivariate Bernoulli random

variables (X̃i)i such that {
X̃i = Xi if i ≤ n
X̃i ∼ Ber(q) otherwise

and such that (X̃i)i are mutually independent. Let Y =
∑ñ
i=1Xi ∼ Poi(⌊cn⌋q). The sum is a

sufficient statistic of the parameter q for Poisson random variables so we can define a function

ϕ̄(Y ) = (Y1, · · · ,Y⌊cn⌋)

such that Yi iid∼ Poi(q) and ∑⌊cn⌋
i=1 Yi =

∑ñ
i=1Xi. Moreover, we set for m ≤ n:

π̄(y1, · · · , yn,m) = (y1, · · · , ym)

On A2, we do not even need to extend the sequence of observations. We call ψPoi the test associated
to the Poisson testing problem:

H0 : q = p v.s. H1 : ∥p− q∥t ≥ ρPoi(⌊cn⌋, p,
η

2 )

We define the randomized test

ψ̄ =


ψPoi ◦ π̄ ◦ ϕ̄(Y ) if A2

0 otherwise.
(2.27)

80



CHAPTER 2. GOODNESS-OF-FIT TESTING IN DISCRETE MODELS

We show that this test has a risk less than η. For the type-I error:

PH0

(
ψ̄(Y ) = 1

)
≤ PH0

(
A2 ∩ ψ̄(Y ) = 1

)
+ PH0(Ā2)

≤ PH0

(
ψ̄(Y ) = 1 |A2

)
+
η

4
≤ PH0

(
ψPoi(Y1, · · · ,Y⌊cn⌋) = 1|A2

)
+
η

4
= P

Y
⌊cn⌋

1 ∼Poi(p)
⊗

⌊cn⌋

(
ψPoi(Y1, · · · ,Y⌊cn⌋) = 1

)
+
η

4

For the Type-II error, the same steps show that for any vector q:

Pq

(
ψ̄(Y ) = 0

)
≤ P

Y
⌊cn⌋

1 ∼Poi(q)
⊗

⌊cn⌋

(
ψPoi(Y1, · · · ,Y⌊cn⌋) = 0

)
+
η

4

We can now compute the risk of ψ̄ when ρ = ρPoi(cn, p, η2 ):

R(ψ) = PH0

(
ψ̄(Y ) = 1

)
+ sup

∥p−q∥t≥ρ
Pq
(
ψ(Y ) = 0

)
≤ η

2 + P
Y

⌊cn⌋
1 ∼Poi(p)

⊗
⌊cn⌋

(
ψPoi(Y1, · · · ,Y⌊cn⌋) = 1

)
+ sup

∥p−q∥t≥ρ
P
Y

⌊cn⌋
1 ∼Poi(q)

⊗
⌊cn⌋

(
ψPoi(Y1, · · · ,Y⌊cn⌋) = 0

)

=
η

2 +R(ψPoi)

=
η

2 +
η

2 = η

This proves ρ∗
Bin(n, p) ≤ ρ∗

Poi(cn, p, η2 ) ≍ ρ∗
Poi(n, p, η).

Proof of Lemma 2. We first prove that ρ∗
Mult(n, p) ≲ ρ∗

Poi(n, p− max) when ∑ pi = 1 by following
the same steps as for proving ρBin ≲ ρPoi: we draw ñ ∼ Poi(cn) and Z1, · · · ,Zñ

iid∼ M(q). Then
the histogram (or fingerprints) is a sufficient statistic of Z1, · · · ,Zñ for q. It is defined as


N1
...
Nd

 :=


∑ñ
i=1 1{Zi = 1}

...∑ñ
i=1 1{Zi = d}

 ∼ Poi(nq),
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where we recall that for any vector v = (v1, . . . , vℓ) with nonnegative entries, we denote by Poi(v)

the distribution
ℓ⊗

j=1
Poi(vj). On A2, defined in (2.26), we have


N2
...
Nd

 ∼ Poi(n(q2, · · · , qd))

so we can just apply the exact same steps to prove that, if q = p then the test ψ̄ from (2.27) has
type-I error less than η

2 and if ∥q− p∥M,t ≥ ρPoi(cn, p, η2 ), its type-II error is less than η
2 .

We now prove the converse bound: ρ∗
Poi(n, p− max, η) ≲η ρ

∗
Mult(n, p, η). Note that the constants

denoted by C and depending on η, are allowed to vary from line to line. Let p = (p1, . . . , pd) be a

probability vector and q = (q2, . . . , qN ) and assume that we observe (X2, . . . XN ) ∼
N⊗
j=2

Poi(nqj) =

Poi (nq). We consider the testing problem

H0 : q = p− max versus H1 : ∥q− p− max∥t ≥ ρ. (2.28)

We exhibit a test ψ and a constant C > 0 such that if ρ ≥ Cρ∗
Mult(n, p, η), then its risk for

problem (2.29) is at most η. For any m ∈ N∗, let ψm be a test such that, if Y1, . . . ,Ym are
multinomial observations drawn with discrete distribution q′ = (q′

1, . . . , q′
d) such that ∑j q

′
j = 1,

then its risk for the following testing problem is at most η:

H0 : q′ = p versus H1 : ∥q′ − p∥M,t ≥ ρ∗
Mult(p,m, η). (2.29)

Now, draw X1 ∼ Poi(np1) independently on (X2, . . . ,XN ), so that (X1, . . . ,XN ) ∼ Poi(nq̄) where
q̄ = (p1, q2, . . . , qd). For some large enough constants C,C ′ depending only on η, let also

ψ0(X1,X2, . . . ,XN ) = 1


∣∣∣∣∣
N∑
j=1

Xj − n
∣∣∣∣∣ ≥ C√n

 ,

where P
(∣∣Poi(n)− n

∣∣ ≥ C√n) ≤ η
100

P
(∣∣Poi(λ)− n

∣∣ < C
√
n
)
≤ η

100 whenever |λ− n| ≥ C ′√n.

We define the randomized test ψ such that, conditional on m :=
∑N
j=1Xj :

ψ(X2, . . . ,XN ) |m = ψ0(X1, . . . ,XN ) ∨ψm(X1, . . . ,XN ).

First, if
∣∣∥q̄∥ − 1

∣∣ > C′
√
n

, then with probability at least 1− η/100, ψ0 will detect it. From now
on, assume that

∣∣∥q̄∥ − 1
∣∣ ≤ C′

√
n

. We now prove that for some large enough constant C,C ′, if

82



CHAPTER 2. GOODNESS-OF-FIT TESTING IN DISCRETE MODELS

∥q̄− p∥M,t ≥ Cρ∗
Mult(p,n, η), then

∥∥∥ q̄
∥q̄∥1
− p

∥∥∥
M,t
≥ C ′ρ∗

Mult(p,n, η). Indeed,

∥∥∥∥∥ q̄

∥q̄∥1
− p

∥∥∥∥∥
M,t
≥ ∥q̄− p∥M,t −

∥∥∥∥∥ q̄

∥q̄∥1
− q̄

∥∥∥∥∥
M,t

≥ Cρ∗
Mult(p,n, η)− ∥q∥t

∣∣∣∣∣1− ∥q̄∥1∥q̄∥1

∣∣∣∣∣
≥ Cρ∗

Mult(p,n, η)−
[
∥p∥M,t + ∥p− q∥M,t

] C ′
√
n

≥ Cρ∗
Mult(p,n, η)− ∥p∥M,t

C ′
√
n

.

Now, since ∥p∥1 ≤ 1 and r = 2t
4−t ≤ t, we have ∥ · ∥r ≥ ∥ · ∥t so that

• C′
√
n
∥p≤A∥M,t ≤ C√

n

√
∥p− max∥r ≤ cρ∗

Mult(p,n, η) for some small enough c > 0, provided that
n is greater than a suitable constant depending on η.

• By Hölder’s inequality, we get C′
√
n
∥p>A∥tM,t ≤ C′

√
n
∥p>A∥2−t

1 ∥p>A∥
(t−1)
2 ≤ C′

√
n
∥p>A∥2−t

1 ·
(

1
n2

)(t−1)
≤

cρ∗
Mult(p,n, η).

Therefore, we get: ∥∥∥∥∥ q̄

∥q̄∥1
− p

∥∥∥∥∥
M,t
≥ Cρ∗

Mult(p,n, η). (2.30)

Now, choose n larger than a suitable constant depending only on η such that P
(
Poi(n) ≥ n

2

)
≥

1− η/100. Conditional on m =
∑N
j=1Xj , the observations (X1, . . . ,XN ) follow a multinomial

distribution M(m, q̄
∥q̄∥1

). Hence, with probability at least 1− η/2, the test ψm will conclude in
favor of H1 in view of (2.30) whenever m ≥ n

2 , since ρ∗
Mult(p,n, η) ≥ Cρ∗

Mult(p, n2 , η2 ). We now
prove that the risk of ψ for Problem (2.29) is at most η.

On the other hand, if q̄ = p̄, then with probability ≥ 1− η/100 : ψ0(X1, . . . ,XN ) = 0 and whenever
m ≥ n

2 , we have ψm(X1, . . . ,XN ) = 0 with probability at least 1− η
4 by definition of ψm, since

ρ∗
Mult(p,n, η) ≥ Cρ∗

Mult(p, n2 , η4 ).

To conclude, we can explicitly bound from above the risk of test ψ as

Pp(ψ = 1) + sup
∥p−q∥M,t≥Cρ∗(p,n,η)

(ψ = 0)

≤2P

(
m <

n

2

)
+ Pp

(
ψ = 1|m ≥ n

2

)
+ sup

∥p−q∥M,t≥Cρ∗(p,n,η)
Pq

(
ψ = 0|m ≥ n

2

)
≤ 2η

100 +
η

4 +
η

100 + η/2 ≤ η,

which proves that ρ∗
Poi ≲ ρ∗

Mult.
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2.D Tightness of [104] in the multinomial case
For fixed n and for two absolute constants C, c > 0, define ϵ+ as the largest quantity satisfying ϵ+ ≤

C

√
∥p− max

−ϵ+/16∥2/3

n + C
n and ϵ− as the smallest quantity satisfying ϵ− ≥ c

√
∥p− max

−ϵ−
∥2/3

n + c
n . By [104],

the critical radius ρ∗ satisfies ϵ− ≲ ρ∗ ≲ ϵ+.

1. First case: If ϵ+ ≤ 16ϵ−, then the bounds match.

2. Second case: otherwise, ϵ+ ≤ C

√
∥p− max

−ϵ+/16∥2/3

n + C
n ≤ C

√
∥p− max

−ϵ−
∥2/3

n + C
n ≤

C
c ϵ− so that the

bounds also match in this case.
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Chapter 3

Goodness-of-Fit Testing for
Hölder-Continuous Densities: Sharp
Local Minimax Rates

This Chapter is based on the paper “Goodness-of-Fit Testing for Hölder-Continuous Densities:
Sharp Local Minimax Rates” [158] by Julien Chhor and Alexandra Carpentier (arXiv:2109.04346).

Abstract

We consider the goodness-of fit testing problem for Hölder smooth densities over Rd: given n iid
observations with unknown density p and given a known density p0, we investigate how large ρ
should be to distinguish, with high probability, the case p = p0 from the composite alternative
of all Hölder-smooth densities p such that ∥p− p0∥t ≥ ρ where t ∈ [1, 2]. The densities are
assumed to be defined over Rd and to have Hölder smoothness parameter α > 0. In the present
work, we solve the case α ≤ 1 and handle the case α > 1 using an additional technical restriction
on the densities. We identify matching upper and lower bounds on the local minimax rates of
testing, given explicitly in terms of p0. We propose novel test statistics which we believe could
be of independent interest. We also establish the first definition of an explicit cutoff uB allowing
us to split Rd into a bulk part (defined as the subset of Rd where p0 takes only values greater
than or equal to uB) and a tail part (defined as the complementary of the bulk), each part
involving fundamentally different contributions to the local minimax rates of testing.

3.1 Introduction
This paper studies the local Goodness-of-Fit testing problem for α-Hölder densities over Ω = Rd.
For all α,L > 0, H(α,L) denotes the class of α-Hölder densities over Ω. We place ourselves on a
subclass P(α,L) of H(α,L). The classes P(α,L) and H(α,L) are defined in Section 3.2. We endow
P(α,L) with some distance denoted by dist(·, ·), which in our setting, can be any Lt distance for
t ∈ [1, 2]: dist(p, q) = ∥p− q∥t. Given the iid observations X1, . . . ,Xn with same unknown density
p ∈ P(α,L), and given a known density p0 ∈ P(α,L), we consider the non-parametric testing

86



CHAPTER 3. GOODNESS-OF-FIT TESTING FOR HÖLDER-CONTINUOUS DENSITIES

problem:
H0 : p = p0 vs H1(ρ) : p ∈ P(α,L) and dist(p, p0) ≥ ρ. (3.1)

This problem is called the goodness-of-fit problem for continuous densities, which has been thor-
oughly studied in many works [19, 17, 16, 183, 23, 48, 44, 29].

Following [16, 17, 183], we will focus on establishing, up to a multiplicative constant, the smallest
possible separation distance ρ∗ = ρ∗(p0,n, dist) in a minimax sense such that a uniformly consistent
test exists for Problem (3.1) - this condition will be specified in more details in Section 3.2.

Problem (3.1) has most often been studied for the uniform density p0 over a bounded domain,
e.g. [0, 1]d [17], [179]. It has been extended to the case of densities p0 constrained to be bracketed
between two constants, still on a bounded domain [16], [23]. See [179, Chapter 6.2] for a more
recent overview. In the case where p0 is the uniform density on [0, 1]d and for α-Hölder densities
with L = 1, and when the distance is defined as d(p, q) = ∥p− q∥t where ∥.∥t is the Lt norm with
t ∈ [1,∞], the minimax-optimal separation radius for Problem (3.1) is

n−2α/(4α+d). (3.2)

See e.g. [183, Theorem 4.2] for the case where d = 1 and in the related sequence space model over
Besov balls. However, these results hinge on the assumption that p0 is lower bounded by a positive
constant. Hence, they cannot be extended to null densities on unbounded domains.

In fact, there is a fundamental gap between testing on bounded or unbounded domains. This was
recently illustrated in the paper [104] which considers the case of Lipschitz densities (α = 1) with
separation in total variation distance (L1 distance). The authors prove that there can be substantial
heterogeneity when it comes to the minimax-optimal radius ρ, depending on p0: testing some null
hypotheses can be much easier than testing others. More precisely, they prove that uniformly over
the class of L-Lipschitz densities, the minimax separation distance is bracketed as follows:

Ld/2
(∫

p0≥a(p0)
p

2
3+d
0

) 3+d
2

n


2

4+d

≲ ρ∗(p0,n, ∥.∥1) ≲


Ld/2

(∫
p0≥b(p0)

p
2

3+d
0

) 3+d
2

n


2

4+d

,

where a(p0) > b(p0) > 0 are quantities - that are small and matching in order of magnitude for
many cases, albeit not all - that depend only on n, p0 and that are defined implicitly. See Section
3.6.3 for a thorough description of their results. The authors formally prove the interesting fact
that the minimax separation distance depends on p0 and they provide a test adapted to the shape
of the density. For instance, if the density p0 defined over R has essentially all its mass on e.g. [0, 1],
then the minimax optimal ρ is L1/5n−2/5 - unsurprisingly comparable with in [183]. However, if
p0 is heavy tailed, e.g. corresponds to the Pareto distribution with parameter β, then the minimax
optimal ρ is L1/5n−2β/(2+3β) - differing considerably from the rate of [183]. This example highlights
a specificity of testing heavy-tailed distributions, and by extension, distributions with unbounded
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support. To encompass all cases, it is therefore important to derive local results where both the
separation distance and the associated tests depend on p0 in a refined way. The results in [104]
follow on ideas from a stream of literature concerning property testing. For goodness-of-fit testing
in the discrete (multinomial) setting, see [4, 10, 32] for global results and [81, 66, 95, 88, 71, 132] for
local results - see also [96] for an excellent survey. In the related setting of goodness-of-fit testing
under local differential privacy, see [124, 159]. Closest to our setting is [132], which studies the
problem of goodness-of-fit for multinomials in Lt norm for t ∈ [1, 2] - see Section 3.6 for a thorough
description of their results, and comparison.

In this paper, we focus on the problem of goodness-of-fit testing for Hölder smooth densities p0, de-
fined on unbounded domains, extending over classical goodness-of-fit testing results following [183].
We find how the minimax separation distance ρ depends on p0 and therefore provide local results.
We consider a variety of separation distances, going beyond the ∥.∥1 distance from [104]: namely
we consider all the Lt distances for t ∈ [1, 2], as in [132] for the multinomial case. We cover all
the scale of Hölder classes H(α,L) for all α > 0, under technical assumptions for α > 1, extending
from the case of testing Lipschitz densities (α = 1) studied in [104]. We identify the matching
upper and lower bounds on ρ(p0,n, dist) and provide the corresponding optimal tests in all the
cases described above. In our results, the radius ρ(n, p0, distLt) is given explicitly as a function of
p0.

We now give a brief overview of the related literature on density testing, and explain more in details
our contributions.

1. Testing for α-Hölder distributions: In the setting where p0 is the uniform distribution
over [0, 1]d the global minimax rates are well understood, see Equation (3.2) and [183] for an
adaptation of these results to the setting where p0 is uniform over [0, 1]d. In the local setting,
however, little is known. In the breakthrough results of [104], the case of Lipschitz densities
(α = 1) is almost completely solved. However, the general case α > 0 is not considered and
from the construction of the tests in [104], it is clear that the case α > 1 is far from being a
trivial extension. Indeed, the test statistics in [104] are built using heterogeneous histograms,
which are not smooth enough when α > 1. In the present paper, we solve the case of α-
Hölder densities for any α - but we need to introduce a technical condition for α > 1. This
assumption is akin to assuming that the density p0 has all its derivative which take value 0
in its inflexion points whose value is close to 0. We introduce novel test statistics, based on
kernel estimators with heterogeneous bandwidth, simpler than the test statistic defined on an
heterogeneous partition of the space from [104]. We believe that this test statistic can also
be of independent interest. See Section 3.6 for a comparison with [104].

2. Extension to Lt distance: The choice of distance influences the geometry of the alternative
and consequently the nature of optimal tests as well as the expression for the minimax separa-
tion radius. In Section 3.6, we highlight that changing the norm can actually change the null
densities p0 which are the easiest or most difficult ones to test. The distances considered in
the density testing literature are often either the L1 distance - as is the case of local results in
[104] where the separation is only considered in L1 distance - or the L∞ distance [179, Chap-
ter 6.2]. In the discrete setting, the L1 norm is often considered [95], as well as the L2 norm
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[124]. The paper [135] considers the two sample testing problem in inhomogeneous random
graphs, in order to study the effect of various distances (total variation, Frobenius distance,
operator norm, Kullback-Leibler divergence). The paper [134] considers the goodness-of-fit
testing problem in inhomogeneous random graphs for the Frobenius and operator norm dis-
tances. However, as will appear in the present paper, the phenomena occurring for testing in
Lt distances are similar for all t ∈ [1, 2]. This property has already been identified in [132] in
the discrete setting (multivariate Poisson families, inhomogeneous random graphs, multino-
mials). The present paper extends the results from [132] to the continuous case, highlighting
a deep connection between the two settings. However, as discussed in Section 3.6, the results
from [132] cannot be directly transferred to the density setting. In our paper, we extend the
results of [104] to the case of more general norms. This impacts the choice of test statistics
and new regimes appear, see Section 3.6 for a comparison with [104] .

3. Matching upper and lower bounds: The local rates established by [104] provide the first
upper and lower bounds for density testing in the local case. Although matching in most usual
cases, the authors discuss quite pathological cases for which their upper and lower bounds
do not match. Indeed, the method proposed in [104] builds on the well-known multinomial
identity testing analysis from [95], which identifies upper and lower bounds on the minimax
separation radius for testing in total variation distance. However, even in the discrete setting,
some specific cases can be found for which these upper and lower bounds do not match,
explaining the untightness of [104] in some cases. In the present paper we bridge the gap, by
proposing a new way to define a cut-off between bulk (set of large values of p0) and tail (set
of small values of p0). This approach leads us to provably matching upper and lower bounds
on the minimax separation radius. As opposed to [104], our result can moreover be expressed
as an explicit function of p0.

The paper is organized as follows. In Section 3.2, we define the testing problem. In Section 3.3,
we state our main theorem identifying the sharp minimax rate for the testing problem. We then
analyse separately two different regimes, namely the bulk regime (in Section 3.4) and the tail regime
(in Section 3.5). We finally discuss our results in Section 3.6.

3.2 Problem Statement

3.2.1 Definition of the class of densities P(α, L)

To ensure the existence of consistent tests for Problem (3.1), structural assumptions need to be
made on the class of densities we consider. Indeed, as shown in [9] and [19], no consistent test can
distinguish between an arbitrary p0 and alternatives separated in lt norm if no further assumption
is imposed on the set of alternatives. Throughout the paper, we place ourselves on a restricted sub-
class of the Hölder class of functions. Our class corresponds to the densities on Ω = Rd (d ∈N∗),
with Hölder regularity and satisfying Assumption (⋆) defined below.
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Let α,L > 0 and denote by ∥ · ∥ the Euclidean norm over Rd. We recall the definition of the Hölder
class over Ω. Set∗ m = ⌈α⌉ − 1 and consider a function p : Ω −→ R that is m times differentiable.
Write z 7→ Pp(x, z) for the Taylor polynomial of degree m of p at x. The Hölder class is defined
as:

H(α,L) =
{
p | Ω −→ R : p is m times differentiable and

∀x, y ∈ Ω : |p(x)− Pp(x, y− x)| ≤ L∥x− y∥α
}

.

Our class of densities is obtained by intersecting H(α,L) with the set of densities p : Ω −→ R+

satisfying:
∀(x, y) ∈ Ω : |p(x)− p(y)| ≤ c⋆p(x) + L∥x− y∥α, (⋆)

for some fixed constant c⋆ ∈ (0, 1
2 ). Note that Assumption (⋆) is automatically satisfied for α ≤ 1.

We discuss Assumption (⋆) in Section 3.6. The class of densities therefore considered throughout
the paper is defined as:

PΩ(α,L, c⋆) =
{
p ∈ H(α,L)

∣∣∣∣ ∫
Ω
p = 1, p ≥ 0 and p satisfies (⋆)

}
. (3.3)

When no ambiguity arises, we will drop the lower index Ω since it is assumed to be equal to Rd.

3.2.2 Minimax testing framework

Throughout the paper, we fix t ∈ [1, 2]. For f ∈ Lt(Ω), we denote by ∥f∥t the Lt norm of f with
respect to the Lebesgue measure:

∥f∥t =
(∫

Ω
|f |t dx

)1/t
.

Assume wlog that the number of observations n is even: n = 2k (k ∈ N∗). We fix two constants
α,L > 0. Assume moreover that we observe n iid random variables X1, · · · ,Xn with the same
unknown density p ∈ P(α,L, c⋆). Let p0 be one particular known density in P(α,L, c⋆) and fix
δ > 0. For some ρ > 0, the goodness-of-fit testing problem is defined as:

H0 : p = p0 versus
H1(ρ, t) : p ∈ P(α,L′, c′

⋆) s.t. ∥p− p0∥t ≥ ρ,
(3.4)

where L′ = (1+ δ)L and c′
⋆ = (1+ δ)c⋆. The parameter δ > 0 can be chosen arbitrarily small. This

point is specific for obtaining local minimax lower bounds (see also [104]). Without this assumption,
arbitrarily small perturbations of p0 when p0 is on the boundary of the class are out of the class.
Thus, putting δ = 0 is problematic as the least favorable functions in the lower bounds are small
perturbations of p0.

∗Here ⌈x⌉ is the smallest integer greater than or equal to a given real number x.
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Our goal is to establish how large ρ should be for (3.4) to be feasible in a sense we now formally
specify.

A test function ψ : Ωn −→ {0, 1} is defined as a measurable function of the observations (X1, . . . ,Xn)
taking only values 0 or 1. The quality of any given test ψ is measured by its risk, defined as the
sum of its type-I and type-II errors:

R(ψ, ρ) def= Pp0(ψ = 1) + sup
p∈P1(ρ,t)

Pp(ψ = 0) (3.5)

where P1(ρ, t) = {p ∈ P(α,L′, c′
⋆) : ∥p− p0∥t ≥ ρ} is the set of all p satisfying H1(ρ, t). We are

looking for a test with smallest possible risk, if it exists. We therefore introduce the minimax risk
as:

R∗(ρ) = R∗(n, p0, t, ρ) = inf
ψ
R(ψ) = inf

ψ

{
Pp0(ψ = 1) + sup

p∈P1(ρ,t)
Pp(ψ = 0)

}
, (3.6)

which corresponds to the risk of the best possible test. Here, inf
ψ

denotes the infimum over all tests.
Note that if R∗(ρ) = 1, then random guessing is optimal. Hence, to have a non-trivial testing
problem, it is necessary to guarantee R∗(ρ) ≤ η for some fixed constant η ∈ (0, 1). Noting that this
bound on R∗ can only hold for ρ large enough, we introduce the minimax separation radius, also
called minimax (testing) rate or critical radius, defined as the smallest ρ > 0 ensuring R∗(ρ) ≤ η.

Definition 3.1 (Minimax separation radius). We define the minimax separation radius, or minimax
(testing) rate, as:

ρ∗ := inf
{
ρ > 0 : R∗(n, p0, t, ρ) ≤ η

}
. (3.7)

In the following, we fix η ∈ (0, 1). The aim of the paper is two-fold.

1. Find the minimax rate ρ∗ = ρ∗(n, p0,α,L, t) defined in (3.7) and associated to problem (3.4),
up to multiplicative constants which are allowed to depend on t, η,α and d.

2. Find a test ψ∗ and a constant C > 0 such that R(ψ∗,Cρ∗) ≤ η. This ensures that if
the hypotheses are separated by Cρ∗, then Problem (3.4) is guaranteed to have a decision
procedure with risk at most η, namely ψ∗.

3.2.3 Notation

In what follows, we will define x ∨ y = max(x, y), x ∧ y = min(x, y) and x+ = x ∨ 0. We will use
∥ · ∥ to denote the Euclidean norm over Rd. The support of a function p : Ω −→ R is defined as
{x ∈ Ω : p(x) ̸= 0}. We write ⌈x⌉ the smallest integer greater than or equal to a given real number
x. For any set A ⊂ Ω and any function f ∈ Lt, we also define ∥fA∥t =

( ∫
A |f |t

)1/t
. Throughout

the paper, we will call "constant" any strictly positive constant depending only on
η,α, t and d. For any two nonnegative functions f , g, we will write f ≲ g if there exists a constant
C > 0 such that f ≤ Cg, where C = C(η, d, t,α). We will also write f ≳ g if g ≲ f and f ≍ g
if f ≲ g and f ≳ g. For any two real numbers a, b we will write [a± b] = [a− b, a+ b]. For any
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set A ⊂ Ω, we will denote by Ac the complement of A in Ω: Ac = Ω \A. Denote by B(Ω) the
Borel σ-algebra over Ω. For any two probability distributions P ,Q over (Ω,B(Ω)), we will denote
by dTV (P ,Q) = sup

A∈B(Ω)

∣∣P (A)−Q(A)∣∣ the total variation distance between P and Q. If P and Q

are absolutely continuous with respect to some measure µ over (Ω,B(Ω)) with densities p and q
respectively, we will also write

dTV (p, q) =
1
2

∫
Ω
|p− q| dµ = dTV (P ,Q).

We also denote by Unif(A) the uniform distribution over any bounded Borel set A ⊂ Rd.

3.3 Results
We fix p0 ∈ P(α,L) defined in (3.3), along with some constant η ∈ (0, 1). We first give an overview
of our results. The domain Ω will be split into two parts, namely the bulk part, where p0 takes
only large values, and the tail part, where p0 takes only small values. The explicit definitions of
B(u) and T (u) are given below.

We will analyze separately the bulk and the tail regimes. In each case, we will restrict p0 to each
particular set, and separately establish the minimax separation radii ρ∗

bulk and ρ∗
tail. Likewise, we

will identify the optimal tests ψ∗
bulk and ψ∗

tail independently on each set. The overall minimax
separation radius (3.7) will be given - up to multiplicative constants - by the sum of the two
terms: ρ∗ ≍ ρ∗

bulk + ρ∗
tail, and the overall optimal test by the combination of the two tests: ψ∗ =

ψ∗
bulk ∨ψ∗

tail.

3.3.1 Partitioning the domain Ω

Splitting the domain into bulk and tail

It has been well known since [95] that, in the multinomial setting, the local goodness-of-fit problem
involves splitting the null distribution into bulk and tail. In our analysis, we also divide Ω into
a bulk B = {x ∈ Ω | p0(x) ≥ uB} and a tail T = Bc = {x ∈ Ω | p0(x) < uB} for some value
uB specified later. On the other hand, like in [104], a further key idea is to divide Ω into smaller
cubes with possibly varying edge lengths. Each cube will be considered as a single coordinate of
a multinomial distribution, allowing us to (approximately) represent our continuous density as a
discrete multinomial distribution.

The fundamental idea of our tail definition is to ensure the following condition. Assume the tail has
been split into cubes with suitable edge length htail (specified below). If H0 holds, then with high
probability, none of the tail cubes will contain 2 observations or more. The cut-off uB is designed
to ensure this condition. Before giving its expression, we first introduce:

∀u ≥ 0 : B(u) :=
{
x ∈ Ω : p0(x) ≥ u

}
and T (u) :=

{
x ∈ Ω : p0(x) < u

}
= B(u)c. (3.8)
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For any Borel set A ⊂ Ω and any measurable nonnegative function f : Ω −→ R+, we write
f [A] = f(A) =

∫
A f . We now introduce an auxiliary value uaux, used to define the cut-off uB:

uaux := sup

u ≥ 0 :
p2

0
[
T (u)

](
p0
[
T (u)

] )d/(α+d)
≤ cI L̃1/(α+d)

, where L̃ =
Ld

n2α (3.9)

and cI is a small enough constant. We will also refer to the following notation throughout the
paper:

I :=
∫

B(uaux)
pr0 =: pr0

[
B(uaux)

]
, where r = 2αt

(4− t)α+ d
. (3.10)

We now introduce the value uB defining our cut-off as

uB = uaux ∨

cA L
d

4α+d

(n2I)
α

4α+d


(4−t)α+d
(2−t)α+d

, (3.11)

where cA is a small enough constant. The constants cI and cA can be chosen arbitrarily small, as
long as they only depend on η,α, t and d. The value uB can be understood as the smallest value
u ≥ uaux such that when p0(x) = u then u ≥ cA Lhb(x)

α. Therefore, on the bulk, it is easily
checked that ∀x ∈ B(uB) : p0(x) ≥ cA Lhb(x)α. In the sequel we will write

B = B(uB) and T = T (uB). (3.12)

We now state our main theorem:

Theorem 3.1. Set L̃ = Ld/n2α and r = 2αt
(4−t)α+d . There exists a constant n = n(d, η, t,α)

independent of p0 such that, for all n ≥ n, the minimax separation radius associated to problem
(3.4) is given by

ρ∗ ≍ ρ∗
bulk + ρ∗

tail + ρ∗
r, (3.13)

where

ρ∗
bulk =

L̃
∥∥∥ p0, B(uaux)

∥∥∥2α

r


1

4α+d

, ρ∗
tail =

[
L̃t−1 p0[ T ](2−t)α+d

] 1
t(α+d) (3.14)

and ρ∗
r =

 Ld(t−1)

nαt+d


1

t(α+d)

.

In the above Theorem, p0,B(uaux) = p0 1{B(uaux)}. Note that ρ∗
bulk depends on n as n−2α/(4α+d).

Note moreover that ρ∗
tail + ρ∗

r ≍
[
L̃
t−1
α+d

(
1
n +

∫
T p0

) (2−t)α+d
α+d

]1/t

. The quantity ρ∗
r is a remainder term

which is analogous to 1
n in discrete testing (see e.g. [132]). The optimal test achieving this rate is

given by ψ∗ = ψ∗
bulk ∨ ψ1 ∨ ψ2 where ψ∗

bulk is defined in (3.22), ψ1 in (3.26) and ψ2 in (3.27). We
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now successively study the bulk and the tail regimes individually.

3.4 Bulk regime
In this subsection, we place ourselves on the bulk and analyze separately the upper bound and
the lower bound on the minimax separation radius. For the upper bound, we identify a constant
C ′
b = C ′

b(η,α, t, d) and a test ψ∗
bulk with risk R(ψ∗

bulk,C ′
bρ

∗
bulk) ≤ η. For the lower bound, we

build a prior distribution p
(n)
ϵ ∈ P(α,L′, c′

⋆) and identify a constant CLBbulk such that almost surely
∥p0 − p

(n)
ϵ ∥t ≥ CLBbulk ρ

∗
bulk and dTV (p

⊗n
0 , Eϵ(p

(n)
ϵ )⊗n) < 1− η where Eϵ is the expectation with re-

spect to the prior distribution.

3.4.1 Bulk upper bound

We will construct a test statistic possibly over the enlarged set B(uB2 ) instead of the bulk B(uB).
For each x ∈ B(uB2 ), introduce the following bandwidth value depending on p0(x):

hb(x) =
p0(x)

2
(4−t)α+d(

n2L4 I
) 1

4α+d
. (3.15)

Throughout the paper, we will say that the bulk dominates (over the tail) whenever

CBTρ
∗
bulk ≥ ρ∗

tail, (3.16)

for some sufficiently large constant CBT . In the converse case, (when CBTρ
∗
bulk < ρ∗

tail), we will
say that the tail dominates. We recall that "constant" denotes any positive real number allowed to
depend only on η, t, d and α. To define our bulk test, we distinguish between two cases. We set

ũB =

uB
2 if the bulk dominates
uB if the tail dominates,

and B̃ = B(ũB). (3.17)

Note that over B̃, it always holds p0 ≥ c̃ALh
α
b where c̃A = 2

2α
(4−t)α+d−1

cA. The bulk upper will be
analyzed over B̃ rather than over B.

Define a kernel K over Rd and introduce the usual notation Kh(x) = 1
hd
K(xh ) for all h > 0 and

x ∈ Rd. We choose K such that

• K is of order α, i.e. for any f ∈ H(α,L) and h > 0: ∥f −Kh(x− · ) ∗ f∥∞ ≤ CKLhα.

• K is bounded in absolute value by a constant depending on α and d.

• K is 0 over {x ∈ Rd : ∥x∥2 > 1
2}.
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In the above definition, we set, for m = ⌈α⌉ − 1:

CK =
1
m!

∫
Rd
∥u∥m2 |K(u)| du. (3.18)

We first split the data (X1, . . . ,X2k) in two equal-sized parts (X1, . . . ,Xk) and (Xk+1, . . . ,Xn).
We set h(x) = chhb(x) where ch = (c̃A/4) 1

α and build for each batch an estimator of the true
underlying distribution p over B̃:

p̂(x) =
1
k

k∑
i=1

Kh(x)(x−Xi), p̂′(x) =
1
k

2k∑
i=k+1

Kh(x)(x−Xi). (3.19)

For all x ∈ B̃, p̂(x) and p̂′(x) are independent random variables. Note moreover the variable
bandwidth h(x) depends on x. We propose the following test statistic:

Tbulk =
∫

B̃
ω(x)

[
p̂(x)− p0(x)

] [
p̂′(x)− p0(x)

]
dx, (3.20)

where ω(x) = p0(x)
2αt−4α
(4−t)α+d . (3.21)

We can now define the optimal test on the bulk:

ψ∗
bulk = 1

{
Tbulk > Cψbtn

}
where tn = Ctn

L
2d

4α+dI
2α+d
4α+d

n
4α

4α+d
, (3.22)

where Cψb and Ctn > 1 are sufficiently large constants.

The re-weighting ω(x) is a re-normalizing factor whose role is to balance the expectation and vari-
ance of Tbulk - in a way that is adapted to, and depends on, the index t of the norm. Note that
ω(x) increases as p0(x) decreases. Therefore, a large dispersion observed at some x ∈ B̃ for which
p0(x) is small will be amplified by ω(x) and contribute to a larger increase in Tbulk. The threshold
tn corresponds, up to a constant, to the standard deviation of Tbulk under H0.

The following proposition yields an upper bound on the minimax separation radius ρ∗
bulk in the

bulk regime. Recall that L′ = (1 + δ)L and c′
⋆ = (1 + δ)c⋆ where δ ∈ (0, 1) is a constant.

Proposition 3.1. For all ρ > 0, define PBulk(ρ) =
{
p ∈ P(α,L′, c′

⋆) |
∫

B̃ |p− p0|t ≥ ρt
}

. There
exists a constant C ′

b = C ′
b(η,α, d, t) > 0, such that:

Pp0(ψ
∗
bulk = 1) + sup

p∈PBulk(C′
b
ρ∗
bulk

)
Pp(ψ

∗
bulk = 0) ≤ η

2 .
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Proposition 3.1 ensures that C ′
bρ

∗
bulk is an upper bound on the contribution of the bulk to the

critical radius. Moreover, it states that in this regime, ψ∗
bulk is an optimal test.

3.4.2 Bulk lower bound

Throughout Subsection 3.4.2, we assume that the bulk dominates. In the following sec-
tions, we will justify why, here, we can make this assumption without loss of generality.

To analyze the bulk lower bound, we split the bulk into small cubes using Algorithm 3. On each
cube, we define an undetectable perturbation in a sense specified below. We first define a bounded
cubic domain Ω̃ ⊂ Ω containing B. We apply Algorithm 3 from Appendix 3.B with inputs given in
Appendix 3.D, which yields a covering of the bulk denoted throughout as (B1, . . . ,BN ), for some
N ∈ N. The cells Bj do not intersect and by construction B ⊂ ∪jBj , while the reverse inclusion
may not necessarily hold. Note that our prior is supported on ∪jBj rather than on B, which will
nonetheless yield the desired rate provided that the bulk dominates.

Following Le Cam’s two-point method, the lower bound is obtained by designing a mixture of
densities in P(α,L′, c′

⋆), indistinguishable from p0 with risk at most η. By "indistinguishable", we
mean that the total variation between n data from p0 and n data from the mixture is constrained
to be ≤ 1 − η. The bulk prior is defined in Appendix 3.D. We here give a general idea of its
construction. On each cell Bj , we add to p0 a random perturbation ϵjϕj where (ϵj)j are iid cen-
tered Rademacher random variables and where ϕj ∈ H(α, δL) is deterministic and supported on
Bj . Each perturbation ϕj is chosen so that

∫
Bj
ϕj = 0 and p0 ± ϕ ≥ 0 over Bj . Hence, for all ϵ,

p
(n)
ϵ := p0 +

∑N
j=1 ϵjϕj is by construction a density and can be shown to belong to P(α,L′, c′

⋆).
The magnitude of (ϕj)j and the edge lengths of (Bj)j are optimized so as to maximize the Lt
discrepancy ∥p(n)ϵ − p0∥t = ∥

∑
j ϕj∥t, subject to dTV

(
p
(n)
ϵ , p⊗n

0

)
≤ 1− η. Moreover, the cut-off

uB can be understood as the smallest value (up to multiplicative constant) ensuring the condition
p0 ± ϕj ≥ 0 over B(uB2 ) once the (ϕj) have been optimally chosen.

Proposition 3.2. In the case where the bulk dominates, i.e. when (3.16) holds, there exists a
constant CLBbulk such that ρ∗ ≥ CLBbulk ρ∗

bulk.

Proposition 3.2 is proved in Appendix 3.D, by showing that ∥∑j ϕj∥t = CLBbulk ρ
∗
bulk and bounding

from above by 1− η the total variation distance between the null distribution and the bulk prior.

3.5 Tail regime
In this section, we place ourselves on the tail and analyse separately the upper bound and the lower
bound. For the upper bound, we identify a constant C ′′ and a test ψ∗

tail with risk R(ψ∗
tail,C ′′ρ∗

tail) ≤
η. For the lower bound, we build a prior distribution p

(n)
b such that ∥p0 − p

(n)
b ∥t ≥ CLBtail ρ

∗
tail with

high probability and dTV (p
⊗n
0 , Eb[p

(n)
b ]) < 1− η where Eb is the expectation with respect to the

prior distribution. We recall that the tail is defined such that, with high probability under H0,
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when split into cubes with suitable edge length htail, no cube contains more than one observation.
Recalling that T = T (uB), define:

htail :=
(
n2L p0[T ]

)− 1
α+d

. (3.23)

For both the upper and the lower bound, we define a binning of the tail domain. This is done
using the following algorithm. As inputs, the algorithm takes a value u > 0 and a length h̃ > 0.
It (implicitly) defines a grid of cubes Cj1,...,jd := [j1 h̃, (j1 + 1)h̃] × · · · × [jdh̃, (jd + 1)h̃] for all
(j1, . . . , jd) ∈ Zd. It returns the indices of all such cubes whose intersection with T (u) is empty
(hence indices of cubes to be removed from the tail covering).

Algorithm 1: Tail splitting

1. Input: u, h̃.

2. Set λ ∈N such that B(u) ⊂ [−λh̃,λh̃]d. Set P = ∅.

3. For (j1, . . . , jd) ∈ ([−λ,λ] ∩Z)d:
if T (u) ∩

[
j1 h̃, (j1 + 1)h̃

]
× · · · ×

[
jdh̃, (jd + 1)h̃

]
= ∅: then P ←− P ∪ {(j1, . . . , jd)}.

4. Return P .

The tail splitting is defined as follows. We denote by P the output of Algorithm 1 and set I =
Zd \ P . Since the bulk is a bounded subset of Ω, P is finite so that I is infinite. Moreover, since
the sum ∑

j∈I

∫
C̃j
p0 is finite (≤ 1), it is possible to sort the cubes

(
Cj
)
j∈I as (C̃l)l∈N∗ , while ensuring

that
(∫
C̃l
p0
)
l∈N∗

is sorted in decreasing order. Note that T (u) ⊂ ⋃
j∈N∗

C̃j , but that the reverse

inclusion does not necessarily hold. Moreover, for j ̸= l, C̃j ∩ C̃l has Lebesgue measure 0. Therefore
almost surely, any observation Xi belongs to at most one of the cubes (C̃j)j .

3.5.1 Tail upper bound

To define our tail test, we distinguish between two cases. In the sequel, CBT denotes a large
constant.

• If the tail dominates, i.e. if CBTρ∗
bulk ≤ ρ∗

tail, then we set (C̃j)j∈N∗ to be the covering defined
by Algorithm 1 with inputs ũB = uB and h̃ = htail.

• If the bulk dominates, i.e. if CBTρ∗
bulk ≥ ρ∗

tail, then we set (C̃j)j∈N∗ to be the covering defined
by Algorithm 1 with inputs ũB = uB

2 and h̃ = hm where

hm =
cm

(n2L4I)
1

4α+d

cA L
d

4α+d

(n2I)
α

4α+d

 2
(2−t)α+d

, (3.24)
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and cm =

(
( 1

2 −
c⋆
2 )

cA√
d
α

) 1
α

. To understand why hm is a natural bandwidth to introduce, set

um =

[
cA

Ld

(n2I)α

] 1
4α+d

(4−t)α+d
(2−t)α+d

and note that uB = uaux ∨ um. Observe moreover that um is
the unique value ensuring that, if for x ∈ Ω, p0(x) = um, then cmhb(x) = hm.

The tail test ψ∗
tail is defined as a combination of two tests:

• The first test ψ1 counts the total number of observations on the tail, i.e. on the union of the
sets C̃j , and rejects H0 when this total mass is substantially different from its expectation
under H0.

• The second test ψ2 rejects H0 whenever there exists one cell C̃j containing two observations
or more.

For each cube C̃j , Nj is defined as the total number of observations on C̃j :

Nj =
n∑
i=1

1{Xi ∈ C̃j}. (3.25)

We call (Nj)j the histogram of (Xi)i on the tail. Note that the family (C̃j)j is infinite but that
there is only a finite number of sets C̃j that contain observations. Thus, the number of values Nj

that are nonzero is finite. Recalling that T = T (uB), our tail test ψ∗
tail is defined as ψ∗

tail = ψ1 ∨ψ2
where:

ψ1 = 1

{∣∣∣∣ 1
n

∑
j∈N∗

Nj − p0[T ]
∣∣∣∣ > Cψ1

√
p0[T ]
n

}
, (3.26)

ψ2 =

1 if Nj ≥ 2 for some j,
0 otherwise.

(3.27)

Here, Cψ1 is a sufficiently large constant. The following proposition yields an upper bound on the
minimax separation radius ρ∗

tail on the tail.

Proposition 3.3. For all ρ > 0, define PTail(ρ) =
{
p ∈ P(α,L′, c′

⋆)
∣∣∣ ∫T (ũB) |p− p0|t ≥ ρt

}
.

There exists a constant C ′′ = C ′′(η,α, d, t) > 0, such that

Pp0(ψ
∗
tail = 1) + sup

p∈ PTail(C′′ρ∗)
Pp(ψ

∗
tail = 0) ≤ η

2 .

This proposition ensures that C ′′ρ∗ is an upper bound on the minimax separation radius when one
restricts to the tail coefficients. Moreover, it states that ψ∗

tail is a test reaching this bound. Note
that in Proposition 3.3, the separation radius on the tail is ρ∗ ≍ ρ∗

bulk + ρ∗
r if the bulk dominates,

or ρ∗ ≍ ρ∗
tail + ρ∗

r if the tail dominates.
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3.5.2 Tail lower bound

To begin with, we state Proposition 3.4 which handles the case where
∫

T p0 < ctail
n for a large

constant ctail.

Proposition 3.4. There exists a constant n0 such that whenever n ≥ n0 and
∫

T p0 <
ctail
n , it holds

ρ∗ ≳ ρ∗
r := L

d(t−1)
t(α+d) n

− αt+d
t(α+d) .

To analyze the tail lower bound, Proposition 3.4 allows us to make the following two assumptions
wlog:

(a) CBTρ
∗
bulk ≤ ρ∗

tail i.e. the tail dominates,

(b)
∫

T p0 ≥ ctail/n.

Indeed, for (a), Propositions 3.1 and 3.3 already establish that ρ∗
bulk + ρ∗

r is an upper bound over
ρ∗. If the bulk dominates, then Propositions 3.2 and 3.4 yield that ρ∗

bulk + ρ∗
r is also a lower bound

over ρ∗. Therefore, (a) can from now be assumed wlog.

As for (b), Propositions 3.1 and 3.3 already establish that ρ∗
tail+ ρ∗

r is an upper bound over ρ∗ when
(a) holds. If

∫
T p0 <

ctail
n , this upper bound further simplifies as ρ∗

tail + ρ∗
r ≍ ρ∗

r and Proposition
3.4 yields the matching lower bound ρ∗ ≳ ρ∗

r .

We now define (C̃j)j∈N∗ the covering of T (uB) given by Algorithm 1 with inputs u = uB and
h = chhtail(uB) for a small constant ch. For all j ∈N∗, define pj =

∫
C̃j
p0. We recall that the cells

(C̃j)j are ordered such that the nonnegative real numbers (pj)j∈N∗ are sorted in decreasing order.
Set:

U = min
{
j ∈N∗

∣∣∣ n2 pj
∑
l≥j

pl ≤ cu
}

. (3.28)

Lemma 46 proves that, when (a) and (b) hold, the union D(U) :=
⋃
j≥U

C̃j is not empty and that

SU =
∑
j≥U

pj > 0. For j ≥ U and for a sufficiently small constant cu > 0, we now set

πj =
pj
π̄

and π̄ =
2cu

n2 ∑
j≥U

pj
. (3.29)

Index U has no further meaning than to guarantee that πj ∈ [0, 1
2 ] for all j ≥ U . In particular, πj

is a Bernoulli parameter.

We now give high-level explanations regarding the construction of the tail prior. To start with,
this prior will be supported over D(U) rather than T (uB). First, one sparse subset of indices
JS ⊂ {U , . . . ,M} is drawn by setting JS = {j : bj = 1} where for each j ≥ U , bj ∼ Ber(πj) are
independent Bernoulli random variables with parameter πj . The random elements of JS represent
the indices of the cubes C̃j denoted here as the selected cubes. On each selected cube

(
C̃j
)
j∈JS
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one large (deterministic) perturbation γ
(↑)
j ∈ H(α, δ′L) is added to p0. Conversely, on each non-

selected cube
(
C̃j
)
j/∈JS

, one small perturbation γ
(↓)
j ∈ H(α, δ′L) is removed from p0. We consider

the random function defined by

qb := p0 +
∑
j≥U

[
bjγ

(↑)
j − (1− bj)γ(↓)j

]
. (3.30)

Since qb may not necessarily be a probability density, we rescale qb to define the prior as follows:

p
(n)
b =

qb∥∥∥qb∥∥∥1

. (3.31)

The definitions of γ(↓)j and γ
(↑)
j are given in Equations (3.120) and (3.121) in Appendix 3.F. We

show in Proposition 3.13 that with high probability, our prior satisfies ∥p0 − pb∥t ≥ CLBtailρ
∗
tail for a

constant CLBtail. The following proposition yields a lower bound in the tail regime.

Proposition 3.5. If the tail dominates, i.e. ρ∗
tail ≥ CBTρ∗

bulk, and if
∫

T (uB) p0 ≥ ctail
n , there exists

a constant CLBtail such that ρ∗ ≥ CLBtailρ∗
tail.

Proposition 3.5 is a corollary of Proposition 3.14 proved in Appendix 3.F.

3.6 Discussion

3.6.1 Discussion of the results

Rates

For n larger than a constant n0, we prove matching upper and lower bounds leading to the following
expression for the critical radius

ρ∗(p0,α,L,n) ≍ L̃
1

4α+d

(∫
B(uaux)

pr0

) (4−t)α+d
t(4α+d)

+ L̃
t−1
α+d

( 1
n
+ p0

[
T (uB)

]) (2−t)α+d
t(α+d)

,

where r = 2αt
4α+d and L̃ = Ld/n2α. The bulk term involves the quantity n−2α/(4α+d) which is the

classical non-parametric rate for testing the null hypothesis of the uniform distribution on [0, 1]d
against the alternative composed of (α,L)-Hölder densities separated from p0 in ∥ · ∥t norm (see
e.g. [183]). Recall that this rate is faster than the non-parametric rate of estimation n− α

2α+d . We
observe that both uB and uaux decrease as n increases. If a fixed p0 is supported on a fixed bounded
domain, then the bulk eventually dominates for n larger than a critical value (depending on p0).

The asymptotic rate therefore simplifies as ρ∗(p0,n,α,L) ≍ L̃
1

4α+d
(∫

Ω p
r
0
) (4−t)+d
t(4α+d) which decays with

n at the non-parametric rate of testing n− 2α
4α+d . However, when Ω is not bounded, we give in

Subsection 3.6.2 examples of fixed null densities p0 for which the tail always dominates, leading to
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critical radii ρ∗(p0,n,α,L) decaying with n at slower rates than n− 2α
4α+d .

In the tail test statistic, we combine the tests ψ1 and ψ2 from (3.26) and (3.27). Test ψ1 compares
the first order moment of p with that of p0. Test ψ2 implicitly checks that the second moment
of p is no larger than that of p0. Indeed, on the tail, the second moment of p0 is so small that,
whp, any cell C̃j contains at most one observation under H0. Conversely, if the second moment of p
is substantially larger than that of p0, then whp one of the cells will contain at least two observations.

Cut-offs

Here is some intuition on why in some cases we consider B(uB2 ) or T (uB2 ) instead of B(uB) and
T (uB). Indeed, it is not always possible to set the optimal bulk prior (3.97) over B(uaux). This
leads us to introduce the smallest cut-off uB ≥ uaux ensuring that (3.97) can be supported on
B(uB). A nice property of uB (see Lemma 24) is that if the tail dominates, then after splitting
T (uB) into cubes with edge length htail, any tail cube should contain either zero or one observation
whp under H0. Unfortunately, this condition no longer holds if the bulk dominates, which is the
reason why we split T (uB/2) into cubes of edge length ≍ hm ≤ min

B(uB)
hb in this case.

Discussion on the regularity conditions - Assumption (⋆)

Our results constitute an attempt to address the case of arbitrary α-Hölder densities over Rd. Our
analysis relies on Assumption (⋆). For α ≤ 1, Assumption (⋆) is automatically satisfied and does
not affect our result’s generality. For α > 1, Assumption (⋆) essentially implies two limitations.

• Limitation for two points which are close: First, any p satisfying (⋆) should be "ap-
proximately constant" over the balls B(x,h(x)) - namely the Euclidean balls centered at x
with radius h(x) ≍

(
p(x)/L

)1/α. Formally, for any y ∈ B(x,h(x)) and for all c ∈ [ 1
2 , 1), it

imposes p(y)
p(x) ∈

[
1± c

]
whenever y ∈ B(x,h(x)) where h(x) =

(
c−c⋆
L p(x)

)1/α
. Noting that

the bulk precisely consists of all x such that Chb(x) ≤ h(x) for some C > 0, this condition
allows us to exclude fast variations of p and p0 over the bulk.

• Limitation for two points which are far: Second, when y /∈ B(x,h(x)), Assumption (⋆)
bounds the maximum deviations of p as |p(x)− p(y)| ≲ L∥x− y∥α. This condition naturally
arises for x corresponding to small values of p(x). In particular, it allows us to exclude fast
variations of p and p0 over the tail.

This assumption is therefore implied by - and in fact, up to multiplicative constants, equivalent to
- assuming that for any m,M such that 0 ≤ 2(1+ c⋆)m < M and such that the level sets {p ≤ m}
and {p ≥M} are not empty, the smallest distance between any two points in these level sets should
be at least (M/L)1/α. This is implied by assuming that whenever p has a local minimum at a
point x where p(x) is close to 0, then all its derivatives up to order ⌊α⌋ are null in this point.
Therefore Assumption (⋆) is not very restrictive - e.g. it is always satisfied for unimodal densities,
or any densities that are monotone outside of a fixed compact, such that the ratio of the upper and
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lower bound of p on this compact is bounded by a constant. Whether or not Assumption (⋆) can
be removed remains an open question.

Influence of the norm

We cover the scale of all Lt distances for t ∈ [1, 2]. Among these distances, only the L1 distance
is an f -divergence. We also identify a duality between the norms: When testing in Lt norm, the
bulk radius is expressed in terms of the Lr norm, where r and t are linked through the relation
r = 2αt

(4−t)α+d . Depending on the value of r, the hardest and easiest null p0 to test are different. If
r < 1, then ∥p0∥r can be made arbitrarily large if the density p0 is sufficiently small everywhere
on Rd. Conversely, ∥p0∥r is minimal for spiked p0 and so is ρ∗

bulk(p0) (see the example of the spiky
null in Subsection 3.6.2). This hierarchy is reversed when r ≥ 1.

3.6.2 Examples

To illustrate our results, we give examples of null densities p0 and of the associated radii ρ∗(p0,n,α,L, t).

Example 1 (Uniform null distribution over Λ = [0,λ]d).

We consider p0 = λ−d over [0,λ]d and set |Λ| = λd. Note that this example cannot be handled by
our present results since p0 is not defined over Rd. However, this case has already been analyzed
in [183], which we give here for a comparison with our results. The asymptotic minimax rate (as
n→∞) writes:

ρ∗(α,L,n, p0) ≍ L̃
1

4α+d |Λ|
(4−3t)α+d
(4α+d)t , where L̃ = Ld/n2α. (3.32)

This is the most commonly studied setting in the literature [183], [23], [17], [16], [179]. Indeed,
for fixed constants C > c > 0, and any smooth density p0 satisfying c ≤ p0 ≤ C, its critical
radius is given by (3.32). However, when we relieve this last assumption and let L be arbitrary,
ρ∗(α,L,n, p0) can substantially deviate from (3.32).

Example 2 (Gaussian null)

Suppose p0 is the density of N (0,σ2Id) over Rd, where σ > 0. Fix α,L and σ, and consider the
asymptotics as n→ +∞. The asymptotic minimax rate associated to p0 is

ρ∗(α,L,n, p0) ≍ L̃
1

4α+d (σd)
(4−3t)α+d
t(4α+d) . (3.33)

This asymptotic rate exclusively corresponds to the bulk rate ρ∗
bulk. It decays with n at the clas-

sical non-parametric rate of testing n− 2α
4α+d . Note the similarity between (3.32) and (3.33) when

σd plays the role of |Λ|. Regardless of the fixed constant σ, testing equality to N (0,σ2Id) or to
Unif

(
[−σ,σ]d

)
are asymptotically equally difficult.

Example 3 (Arbitrary p0 with support over Ω′ = [−1, 1]d and L = 1.)
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We recall that the support of p : Ω −→ R is {x ∈ Ω : p(x) ̸= 0}. In this example, we therefore
consider an arbitrary null density p0 defined over Ω = Rd which is zero outside Ω′ = [−1, 1]d. For
any such p0 ∈ P(α, 1, c⋆), the rate simplifies as:

ρ∗(α, 1,n, p0) ≍ n− 2α
4α+d . (3.34)

Noticeably, this rate is independent of p0 and coincides with (3.32). Indeed, fixing the support
Ω′ = [−1, 1]d and L = 1 constrains p0 to have only limited variations. In this case, all its mass
cannot be concentrated on a small part of the domain. This example illustrates that, for fixed
bounded support and for L = 1, all of the testing problems (3.4) are equally difficult regardless of
p0. Conversely, when L or Ω′ are allowed to depend on n or when the support Ω′ is unbounded, the
local rate ρ∗(α,L,n, p0) can significantly deviate from (3.32). This is illustrated in the following
examples.

Example 4 (Spiky null).

Let Ω = Rd. Define f ≥ 0 such that f ∈ H(α, 1) ∩ C∞ over Rd and f is nonzero only over{
x ∈ Rd : ∥x∥ < 1/2

}
. We here moreover assume that f satisfies

∀x, y ∈ Rd : |f(x)− f(y)| ≤ c⋆f(x) + ∥x− y∥α.

The spiky null density is defined as follows:

p0(x) = Laαf

(
x

a

)
(3.35)

where a = (∥f∥1L)− 1
α+d . Informally, this corresponds to an approximation of the Dirac distribution

δ0 by a density in P(α,L, c⋆). In this case we have:

ρ∗(p0,α,L,n) ≍ L
d(t−1)
t(α+d)n− 2α

4α+d . (3.36)

Note that the density (3.35) is supported on [−a, a]d and the corresponding minimax rate is the
same as for the uniform density over [−a, a]d. Note that there is only one regime: Indeed, by the
choice of a, the value |Ω| ≍ L−d(α+d) is always smaller than L̃− 1

α+d up to constants. Assume now
that L → ∞ as n → ∞, so that p0 is supported over Ω̃ = [−1, 1]d for n large enough. Suppose
moreover that L̃→ 0 so that, over Ω̃, the rate (3.32) simplifies as L̃

1
4α+d . We then note that (3.36)

is faster than L̃
1

4α+d if, and only if, r ≤ 1. It is possible to show that over a bounded domain, for all
Lt norms such that r ≤ 1, the uniform null distribution has maximum separation radius whereas
the spiky null has the smallest one. Conversely for t such that r > 1, the uniform distribution has
minimum separation radius whereas the spiky null has the largest one.

Note that by rescaling (see Proposition 3.15), letting L → +∞ for fixed n and fixed support is
equivalent to letting the support size go to infinity while L,n are fixed. This example illustrates
that over growing domains, some compactly supported densities can substantially deviate from the
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uniform distribution over their support.

Example 5 (Pareto null)

We place ourselves over R (hence d = 1) and consider for x0 > 0 and β ∈ (0, 1) the null density
p0(x) =

βxβ0
xβ+1 over [x1,+∞). Here x1 > x0 is chosen so that p0 can be extended over (−∞,x1] to

get a density in P(α,L, c⋆) which is 0 over (−∞,x−1] for x−1 < x0. For simplicity we only give
the rate for α ≤ 1 and t = 1 i.e. for the total variation distance, although the general rate can be
established for all α > 0 and t ∈ [1, 2]. The minimax separation radius simplifies as

ρ∗(α,L,n, p0) ≍ L̃
β

3β+1 =

(
Ld

n2α

) β
3β+α+1

. (3.37)

Interestingly, for all L,n, this rate exclusively corresponds to the dominating term ρ∗
tail. This

example illustrates that for some heavy-tailed densities defined on unbounded domains, the sep-
aration distance substantially deteriorates compared to the spiky null with L = 1 - and justifies
the importance of establishing a tight rate in the tail regime. Noticeably, the whole scale of rates
from 1 to n− 2α

4+α can be obtained for α ≤ 1 and are all slower than the classical non-parametric
rate of testing n− 2α

4α+1 . For t > 1, a slower rate (depending on α,β, t) can similarly be observed as
compared to the case of a spiky null density.

3.6.3 Comparison with prior work

Special case of the ∥ · ∥1 norm (total variation)

The case of the L1 norm has been studied in [104]. Here we state their main result for density
testing. Suppose that we observe X1, . . . ,Xn with density p over Ω and fix a particular density p0
over Ω. Assume that p and p0 are L-Lipschitz and consider the identity testing problem

H0 : p = p0 vs H1 : ∥p− p0∥1 ≥ ρ and p is L-Lipschitz. (3.38)

Problem (3.38) is a special case of our setting where α = 1 and t = 1. For all σ > 0, let
Bσ = {B : Pp0(B) ≥ 1− σ} and define the functional

Tσ(p0) = inf
B∈Bσ

(∫
B
pγ0

)1/γ
, (3.39)

where γ = 2
3+d . For two explicit constants c,C > 0, define the upper and lower critical radii as the

solutions of the fixed-point equations:

vn(p0) =

Ld/2TCvn(p0)(p0)

n

 2
4+d

and wn(p0) =

Ld/2Tcwn(p0)(p0)

n

 2
4+d

. (3.40)
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Theorem 3.2. [Balakrishnan, Wasserman (2017)] There exist two constants c,C > 0 such that the
critical radius for problem (3.38) satisfies ρ∗(p0, 1,L,n) ≤ Cwn(p0). Moreover, if p0 is c′L-Lipschitz
where c′ ∈ (0, 1), then it holds ρ∗(p0, 1,L,n) ≥ cvn(p0).

We now state our Theorem 3.1 in the special case α = 1 and t = 1. For all L > 0, for all cubic
domain Ω, for all p0 L-Lipschitz over Ω, we have:

ρ∗(p0,L,n) ≍

Ld/2

n

(∫
B(uaux)

pr0

)1/r
 2

4+d

+ p0
[
T (uB)

]
+

1
n

, where r = 2
3 + d

= γ. (3.41)

We first note that our bulk term
(
L
d
2
n

(∫
B(uaux)

pr0
)1/r

) 2
4+d

is the analog of vn(p0) and wn(p0)

in Theorem 3.2. However, it is defined explicitly in terms of p0 and does not involve solving a
fixed-point equation. In Theorem 3.2 the critical radius is bracketed between vn(p0) and wn(p0).
Although these two quantities are of the same order in most usual cases, the authors in [104] discuss
pathological cases for which wn(p0) ≪ vn(p0). This non-tightness can be attributed to possibly
large discrepancies between Tσ1(p0) and Tσ2(p0) (with σ1 ̸= σ2) for some carefully chosen p0. In the
present paper, we bridge this gap by identifying matching upper and lower bounds in the considered
class and also in more general classes corresponding to any α > 0.

In the case of separation in ∥ · ∥1, we identify a tail contribution given by ρ∗
tail ≍

∫
T (uB) p0. As

Ω = Rd, this allows us to pick p0 depending on L and n so that ρ∗
tail ≍ 1. Indeed, for fixed n,L

consider a suitably smooth density p0 such that maxΩ p0 ≤ cI L̃
1

α+d . Then by the definition of uaux
from equation (3.9),

∫
T (uB) p0 ≥

∫
T (uaux)

p0 = 1. This illustrates that even in the most favorable
regime L → 0 and n → ∞, there exist smooth null densities p0 over Ω associated to the trivial
maximal separation radius ρ∗(p0,n,α,L) ≍ 1. These correspond to the worst case densities over
the class. On unbounded domains, it is therefore crucial to identify local results since the global
problem (i.e. the worst case over the class) has a trivial rate. The fact that estimation of α-Hölder
densities in total variation over unbounded domains has a trivial rate was already highlighted in
[15], [39], [69]. Recalling that estimation is more difficult than testing, we here recover this result.

Comparison with the discrete setting [132]

The paper [132] considers a discrete analog of the present problem. Suppose we observe iid
X1, . . . ,Xn distributed asM(p) whereM(p) denotes the multinomial distribution over {1, . . . , d}.
When X ∼ M(p), we have ∀j ∈ {1, . . . , d} : P(X = j) = p(j). Suppose we are given a known
discrete distribution p0 over {1, . . . , d} and assume wlog that the entries of p0 are sorted in decreasin
order. We consider the following testing problem:

H0 : p = p0 vs H1 : ∥p− p0∥t ≥ ρ, (3.42)
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where ∥p− p0∥t =
(

d∑
j=2

∣∣∣p(j)− p0(j)
∣∣∣t)1/t

and t ∈ [1, 2]. Introduce the index I as

I = min
{
j ∈ {1, . . . , d}

∣∣∣ ∑
j>I

n2p2(j) ≤ c′
I

}
, (3.43)

for some constant c′
I = c′

I(η, t). Moreover, define the index A as:

A = min
{
j ≤ I

∣∣∣ pb/2(j) ≥ c′
A

√
n
( ∑
j≤I

pr
′

0 (j)
)1/4

}
(3.44)

where b = 4−2t
4−t and r′ = 2t

4−t . The following theorem is valid:

Theorem 3.3. [Chhor, Carpentier (2020)] It holds:

ρ∗(p0,n, d, t) ≍ ρ∗ M
bulk + ρ∗ M

tail + ρ∗ M
remain,

where ρ∗ M
bulk =

√
1
n

∥∥∥(p0)
− max
≤I

∥∥∥
r′

, ρ∗ M
tail = n

2
t
−2∥(p0)>A∥1−2/t

1 , ρ∗ M
remain = 1/n,

∥∥∥(p0)
− max
≤I

∥∥∥
r′
=

(
I∑
j=2

pr
′

0 (j)

)1/r′

and ∥(p0)>A∥1 =
∑
j>A

p0(j).

Upper and lower bounds for multinomial identity testing were previously known (see [95] for the L1
norm), but did not match in some specific cases. The above theorem provides a new way to define
the tail, leading to the matching upper and lower bounds for all Lt norms for t ∈ [1, 2], which were
missing in [95].

This discrete setting and our present continuous setting involve many similar phenomena. The
discrete tail, defined as {p0(j) | j > A}, is designed so that whp under H0, no coordinate j > A is
observed twice among the n data X1, . . . ,Xn. Our approach in the present paper aims at transfer-
ring this tail definition to the continuous setting.

Theorem 3.3 identifies a three-fold contribution to ρ∗ (bulk, tail and remainder term) which is
similar to ours. However, there are some substantial challenges in our continuous setting compared
to the discrete testing problem.

• First, the discretization that we adopt (for both the lower bounds and for the tail statistic),
as well as the bandwidth of the kernel (for the bulk statistic) must depend on p0. Finding
this optimal discretization/bandwith is challenging in itself, and raises some fundamental in-
formation theoretic questions, as well as some difficult technical issues. For instance, the bulk
test statistic is based on the integral of a functions of a in-homogeneous kernel approximation
of p, which is very different from what is done in the discrete setting.

• Second, even when this discretization/kernelisation has been done, the test statistics are not
direct analogs of the discrete test statistics from [132]. In both cases - discrete and continuous -
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the bulk test statistics is a reweighted χ2 test statistic with inhomogeneous weights, depending
on each coordinate of p0. However in the continuous case, the reweighting factor ω(x) cannot
be directly deduced from the discrete setting. Indeed, there is a distortion in the integral
coming from the non-homogeneity of the Kernel bandwidth, whose effect has to be taken into
account on top of the non-homegeneity coming from ω(x).
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Appendix

3.A Relations between the cut-offs
We will also use the following notation:

T̃ (uaux) =
{
x ∈ Ω : p0(x) ≤ uaux

}
. (3.45)

Note that in the above definition, the inequality p0(x) ≤ uaux is not strict, whereas the inequalities
in the definitions of T (uaux) and T (uB) are strict. Furthermore, we define three different lengths
htail(uaux),htail(uB) and h̄tail as follows:

htail(uaux) =

(
n2L

∫
T (uaux)

p0

)− 1
α+d

. (3.46)

htail(uB) =

(
n2L

∫
T (uB)

p0

)− 1
α+d

. (3.47)

h̄tail(uaux) =

(
n2L

∫
T̃ (uaux)

p0

)− 1
α+d

. (3.48)

and prove in Subsection 3.E.4 that they all differ at most by a multiplicative constant.

Lemma 1. Let T̃ (uaux) be defined as in (3.45).

• We have ∫
T (uaux)

p2
0 ≤

cI

n2hdtail(uaux)
.

• Moreover, if max
Ω

p0 ≥ uaux, then it holds:

∫
T̃ (uaux)

p2
0(∫

T̃ (uaux)
p0

)d/(α+d)
≥ cI

Ld/(α+d)

n2α/(α+d)
,

implying: ∫
T̃ (uaux)

p2
0 ≥

cI

n2h̄dtail
.

Proof of Lemma 1. By definition of uaux, there exists a sequence (uj)j∈N such that uj ↑ uaux and∫
T (uj )

p2
0(∫

T (uj )
p0

)d/(α+d) ≤ cI L̃
1

α+d . The dominated convergence theorem yields the result.
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For the second part, when u ↓ uaux, we have by the dominated convergence theorem that
∫

T (u) p
2
0 →∫

T̃ (uaux)
p2

0 and
∫

T (u) p0 →
∫

T̃ (uaux)
p0 so that

∫
T (u)

p2
0(∫

T (u)
p0

)d/(α+d) −→
∫

T̃ (uaux)
p2

0(∫
T̃ (uaux)

p0

)d/(α+d) . Moreover,

by definition of uaux, for all u > uaux we have
∫

T (u)
p2

0(∫
T (u)

p0

)d/(α+d) > cI
Ld/(α+d)

n2α/(α+d) (since uaux ≤ max
Ω

p0),

which yields the result.

We now define

ρ∗
tail =

L̃
t−1
α+d

(∫
T (uB) p0

) (2−t)α+d
α

(∫
T̃ (uaux)

p0

) (2−t)α+d
α

d
α+d


1/t

. (3.49)

Lemma 2. If uB > uaux and max
Ω

p0 ≥ uaux then ρ∗
tail ≥ C2 ρ∗

bulk where C2 = c
(2−t)α+d

αt
I c

− (4−t)α+d
αt

A .

Proof of Lemma 2. If uB > uaux then by definition of uB given in (3.11), we have

uB =

cA L
d

4α+d

(n2I)
α

4α+d


(4−t)α+d
(2−t)α+d

.

By Lemma 1, we have:

uB

∫
T̃ (uaux)

p0 ≥
∫

T̃ (uaux)
p2

0 ≥
cI

n2h̄dtail
= cI

[
L̃

(∫
T̃ (uaux)

p0

)d] 1
α+d

. (3.50)

Therefore:
uB

∫
T (uB)

p0 ≥ cI

[
L̃

(∫
T̃ (uaux)

p0

)d] 1
α+d

.

Raising this relation to the power (2−t)α+d
αt and recalling the expressions of ρ∗

bulk and ρ∗
tail, we get

ρ∗
tail ≥ C2 ρ∗

bulk.

Lemma 3. Whenever uB > uaux and max
Ω

p0 ≥ uaux, we have

Iu2−r
B ≤ C3

n2
h̄d

2/α
tail

h
d(α+d)/α
tail

,

where the constant C3 = c
2 (4−2t)α+d

(2−t)α+d
A C

− td
(2−t)α+d

2 can be made arbitrarily small by taking cA small
enough.
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Proof of Lemma 3. We have 2− r = 2 (4−2t)α+d
(4−t)α+d , so that

Iu2−r
B = c

2 (4−2t)α+d
(2−t)α+d

A L̃
2

4α+d
(4−2t)α+d
(2−t)α+d I

d
(2−t)α+d

(4−t)α+d
4α+d . (3.51)

On the other hand, by Lemma 1:

∫
T̃ (uaux)

p2
0 ≥

cI

n2h̄dtail
= cI

[
L̃

(∫
T̃ (uaux)

p0

)d] 1
α+d

. (3.52)

Moreover, when uB > uaux, we have by Lemma 2, C2ρ∗
bulk ≤ ρ∗

tail(uaux). We now raise this relation
to the power td

(2−t)α+d :

L̃
2

4α+d
(4−2t)α+d
(2−t)α+d I

d
(2−t)α+d

(4−t)α+d
4α+d ≤ L̃

1
α+d

C
td

(2−t)α+d
2

(∫
T (uB) p0

) d
α

(∫
T̃ (uaux)

p0

) d
α

d
α+d

=
1

C
td

(2−t)α+d
2

1
n2

h̄d
2/α
tail

h
d(α+d)/α
tail

. (3.53)

Equations (3.51) and (3.53) yield the result.

Lemma 4. Set C̄ = cI +C3. The constant C̄ can be made arbitrarily small by choosing successively
cI and cA small enough. This can be done by taking cα+dI = c4α+d

A . If uB > uaux and max
Ω

p0 ≥ uaux,
then it holds: ∫

T (uB)
p2

0 ≤
C̄

n2htail
d
.

Proof of lemma 4. Suppose that uB > uaux.∫
T (uB)

p2
0 =

∫
T (uaux)

p2
0 +

∫
B(uaux)∩T (uB)

p2
0 ≤

cI
n2h2

tail(uaux)
+ Iu2−r

B

≤ cI
n2h2

tail(uaux)
+
C3
n2

h̄d
2/α
tail

h
d(α+d)/α
tail (uaux)

by Lemma 3 (3.54)

≤ C̄ 1
n2h̄dtail

. (3.55)

Lemma 5. Regardless of whether uaux > max
Ω

p0 or not, and regardless of whether uaux = uB or
not, it always holds : ∫

T (uB)
p2

0 ≤
C̄

n2hdtail(uB)
.

Proof of Lemma 5. If uaux = uB then htail(uaux) = htail(uB). Moreover, by definition of uaux, we
have:

∫
B(uaux)

p2
0 ≤ cI

n2hd
so the result holds by recalling C̄ = cI +C3. Now If uB > uaux > max

Ω
p0,
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then htail(uB) ≤ h̄tail(uaux), so the result holds as well. Finally, if uaux > max
Ω

p0, then T (uaux) =
T (uB) so the result holds as well by Lemma 1 item 1.

We now show that htail(uB) ≍ h̄tail(uaux) when uB > uaux.

Lemma 6. If uB > uaux then C6htail(uB) ≥ h̄tail(uaux) where htail(uB), h̄tail(uaux) are defined
in (3.47), (3.48) and C6 is a constant. Hence it always holds htail(uB) ≍ h̄tail(uaux).

Proof of Lemma 6. Suppose that uB > uaux. Then by Lemma 4, we have
∫

T (uB) p
2
0 ≤ C̄ 1

n2h̄d
tail

.
Moreover, by definition of uaux, since uB > uaux we can write:

∫
T (uB) p

2
0 ≥ cI

1
n2htail(uB)d

, hence:
(1 + C3

cI
)htail(uB) ≥ h̄tail(uaux). Moreover, it directly follows from the definition of htail(uB) and

h̄tail(uaux) that htail(uB) ≤ h̄tail(uaux). Hence htail(uB) ≍ h̄tail(uaux).

Lemma 7. Assume CBTρ∗
bulk ≥ ρ∗

tail. There exists a constant C7 > 1 depending only on CBT , cI
and cA, such that:

∫
B(

uB
2 ) p

r
0 ≤ C7 I.

Proof of Lemma 7.∫
B(

uB
2 )\B(uB)

pr0 ≤ urB
∣∣∣B(uB2

)
\ B(uB)

∣∣∣ ≤ ur−2
B

∫
B(

uB
2 )\B(uB)

4p2
0

≤ 4ur−2
B

C̄

n2htail(uB)d
by Lemma 5. (3.56)

Moreover, the condition CBTρ
∗
bulk ≥ ρ∗

tail exactly rewrites

ur−2
B

n2htail(uB)d ≤ C
td

(2−t)α+d

BT c
−2 (4−2t)α+d

(4−t)α+d

A · I,

so that (3.56) gives:

∫
B(

uB
2 )\B(uB)

pr
0 ≤ 4C̄C

td
(2−t)α+d

BT c
−2 (4−2t)α+d

(4−t)α+d

A · I

so that ∫
B(

uB
2 )

pr
0 ≤

(
1 + 4C̄C

td
(2−t)α+d

BT c
−2 (4−2t)α+d

(4−t)α+d

A

)
· I =: C7I.

Lemma 8. If the tail dominates, i.e. if ρ∗
tail ≥ CBTρ∗

bulk where CBT is a large constant, then there
exists a small constant C8 depending only on CBT and decreasing with respect to CBT , such that∫

T (2uB)
p0 ≤ (1 +C8)

∫
T (uB)

p0.
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Proof of Lemma 8. We show that
∫

T (2uB) p0−
∫

T (uB) p0 ≤ C8
∫

T (uB) p0. Note that r can be greater
or smaller than 1, so that on T (2uB) \ T (uB) we have: p0 ≤ (21−r ∨ 1)u1−r

B pr0. We therefore have

(2r−1 ∧ 1)
∫

T (2uB)\T (uB)
p0 ≤ u1−r

B

∫
T (2uB)\T (uB)

pr0 ≤ u1−r
B I

= I
(α+d)((4−t)α+d)
(4α+d)((2−t)α+d)

L
d

4α+d
(4−3t)α+d
(2−t)α+d

n
2α

4α+d
(4−3t)α+d
(2−t)α+d

≤ C
− α+d

(2−t)α+d
BT

∫
T (uB)

p0,

where the last inequality is obtained by using the assumption ρ∗
tail ≥ CBTρ∗

bulk and the expressions
of ρ∗

bulk and ρ∗
tail.

Lemma 9. If the tail dominates, i.e. if ρ∗
tail ≥ CBTρ

∗
bulk where CBT is a large enough constant,

then there exists a small constant C9 depending only on CBT and decreasing with respect to CBT ,
such that ∫

T (2uB)
p2

0 ≤
C9

n2hdtail
.

Proof of Lemma 9. We have, recalling equations (3.51), (3.53), (3.55):

2r−2
∫
T (2uB)\T (uB)

p2
0 ≤ u2−r

B

∫
B(uB)

pr0 ≤
C̄

n2h̄dtail
.

Moreover, C̄
n2h̄d

tail

≤ C̄
n2hd

tail
(2uB)

and htail(2uB) ≥ (1 +C8)
− 1
α+dhtail(uB) by Lemma 8. Now:

∫
T (2uB)

p2
0 ≤

C̄

n2hdtail
+
C̄22−r(1 +C8)

d
α+d

n2hdtail
.

which yields the result.

Lemma 10. In the case
∫

T p0 ≥ ctail
n , there exists constants CBT ,C(2)

BT such that we have

ρ∗
tail ≥ CBTρ∗

bulk ⇐⇒ hm ≥ C
(2)
BThtail(uB),

where hm is defined in Equation (3.24). In particular we have

ρ∗
tail ≥ CBTρ∗

bulk =⇒ inf
x∈B

hb(x) ≥ C
(2)
BThtail(uB),

where C(2)
BT can be made arbitrarily large by choosing CBT large enough.

Proof of Lemma 10. The result can be proved by direct calculation, recalling the expression of
htail(uB) from (3.47), the expressions of ρ∗

bulk and ρ∗
tail from (3.14) and that infx∈B hb(x) ≥ hm.

112



CHAPTER 3. GOODNESS-OF-FIT TESTING FOR HÖLDER-CONTINUOUS DENSITIES

3.B Partitioning algorithm
We now introduce the recursive partitioning scheme, inspired from [104]. For any cube A ⊂ Ω,
denote by e(A) its edge length. For any function h : Ω → R+, denoting by xA the center of A,
define h(A) = h(xA). The partitionning algorithm takes as input a cubic domain Ω̃ ⊂ Ω, a pa-
rameter β ≥ α, a value u > 0 and a constant cβ > 0. Defining the bandwidth function h : Ω̃→ R+

such that p0(x) = cβ h
β(x) over Ω̃, as well as the set D(u) = {x ∈ Ω̃ : p0(x) ≥ u} to be split into

cubes, the algorithm returns a family P = {A1, . . . ,AN} of disjoints cubes of Ω̃ covering D(u) (i.e.
such that D(u) ⊂ ∪Nj=1Aj), and such that, for all j = 1, . . . ,N , h(Aj) ≥ e(Aj) ≥ 1

2β+1h(Aj). Note
that the center of Aj need not belong to D(u). Algorithm 2 corresponds to an auxiliary algorithm
called by the actual partitioning algorithm defined in Algorithm 3.

Algorithm 2: Recursive auxiliary algorithm
1. Input: A,h,D,P .

2. • If A∩D = ∅: return P .
• If e(A) ≤ h(A): return P ∪ {A}.
• Else:

(a) Split A into 2d cubes A1, . . . ,A2d obtained by halving A along each of its axes.
(b) return

⋃2d
i=1 Algorithm 2(Ai,h,D,P ).

Algorithm 3: Adaptive partition

1. Input: Ω̃,β,u, cβ.

2. Initialization: P = ∅, D(u) = {x ∈ Ω̃ : p0(x) ≥ u}, h =

(
p0
cβ

) 1
β

.

3. Return Algorithm 2
(

Ω̃,h,D(u),P
)
.

We have the following guarantees for Algorithm 3.

Proposition 3.6. Algorithm 3 terminates. Assume moreover that Algorithm 3 splits the domain
at least once and that there exists a constant cα > 0 such that c⋆ +

√
d
α

cα
(21−α ∨ 1) ≤ 1/2 and such

that ∀x ∈ D(u) : p0(x) ≥ cαLhα(x). Then:

1. Denoting by P the output of Algorithm 3 with inputs Ω̃,β,u, cβ, it holds: D(u) ⊂ ∪A∈PA;

2. For all cube A ∈ P , it holds: h(A) ≥ e(A) ≥ 1
2β+1h(A).

3. For all cell A ∈ P we have minA p0 ≥ 1
2 maxA p0. Consequently, it holds ∪A∈P A ⊂ D(u2 ).

Proof of Proposition 3.6. Fix a cube Ω̃ ⊂ Ω, β > 0, u > 0 cβ > 0.
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Termination: Suppose that Algorithm 3 does not terminate. Then, among the cubes defined
at some step by the algorithm, there would exist an infinite sequence (Al)l∈N of nested cubes
of Ω̃ satisfying:

(i) A0 = Ω̃,
(ii) ∀l ∈N: Al+1 ⊂ Al,
(iii) ∀l ∈N : e(Al+1) =

1
2e(Al),

(iv) ∀l ∈N : Al ∩D(u) ̸= ∅.

Denote by xl the center of Al for all l ∈N. Then by (ii) and (iii), (xl)l is a Cauchy sequence
of [0, 1]d and thus converges to some x∞ ∈ Ω. Moreover, denoting by d∥·∥2(x,D(u)) the
Euclidean distance of x to D(u), we have: d∥·∥2(xl,D(u)) ≤ e(Al)

√
d

2 = 2−le(Ω̃)
√
d

2 → 0.
Since D(u) is closed by continuity of p0, it holds p0(x∞) ≥ u > 0. However, at each step, Al
is split, imposing e(Al) ≥ h(xl)→ 0, hence h(x∞) = 0, yielding p0(x∞) = 0 since p0 = cβh

β

over Ω̃. This leads to a contradiction.

1. It is straightforward to check that when the algorithm terminates, D(u) ⊂ ∪A∈PA.

2. Let A ∈ P . Denote by A′ the parent of A in the hierarchical splitting performed by Algorithm
2. Since by assumption the domain is split at least once, A′ exists. Since A′ was split and
A was kept we necessarily have: 2h(A) ≥ 2e(A) = e(A′) > h(A′). Denote by xA and xA′

the respective centers of A and A′. Since by definition of A, xA′ is a vertex of A, we have
∥xA − xA′∥ = e(A)

√
d

2 ≤ h(A)
√
d

2 . By Assumption (⋆):

|p0(xA)− p0(xA′)| ≤ c⋆p0(xA) + L∥xA − xA′∥α = c⋆p0(xA) + Lh(A)α
(√

d

2

)α
. (3.57)

There are two cases:

• If xA ∈ D(u) then |p0(xA)− p0(xA′)| ≤ c⋆p0(xA) +
1
cα
p0(xA)

(√
d

2

)α
≤ p0(xA)/2, hence

p0(x′
A) ≥ p0(xA)/2.

• Otherwise, xA /∈ D(u). Let xu ∈ A∩D(u). Since A was kept by Algorithm 3, xu exists.
By the definition of D(u), it holds p0(xA) < p0(xu), hence h(xA) < h(xu). We have
∥xA − xu∥ ≤ e(A)

√
d

2 ≤ h(A)
√
d

2 ≤ h(xu)
√
d

2 . By Assumption (⋆): |p0(xA)− p0(xu)| ≤
c⋆p0(xu) + Lh(xu)α

(√
d

2

)α
≤ p0(xu)

2 , hence p0(xA) ≥ p0(xu)
2 . Therefore, it holds:

Lhα(xA) ≤ Lhα(xu) ≤
1
cα
p0(xu) ≤

2
cα
p0(xA).

Injecting this relation into (3.57), we get: |p0(xA)− p0(xA′)| ≤ 1
2p0(xA) hence p0(xA′) ≥

p0(xA)/2.

In both cases, it holds p0(xA′) ≥ p0(xA)/2, hence h(xA′) ≥ h(xA)/21/β. We therefore get
h(A) ≥ e(A) ≥ h(A′)

2 ≥ h(A)/21+1/β.
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3. Let A ∈ P and x = arg maxA p0, y = arg minA p0. We have by Assumption (⋆):

|p0(x)− p0(y)| ≤ c⋆p0(x) + L(e(A)
√
d)α ≤

(
c⋆ +

√
d
α

cα

)
p0(x) ≤

p0(x)

2 .

3.C Upper bound in the bulk regime

3.C.1 Technical lemmas in the bulk regime

Throughout the Appendix, we will denote by B(x,h) the Euclidean ball of Rd centered at x and of
radius h. When no ambiguity arises, ∥ · ∥ will denote the Euclidean norm over Rd. In Appendix
3.C only, we will denote by h(x) the quantity chhb(x) where the constant ch can be chosen
arbitrarily small. We first prove the following result, stating that for any p satisfying Assumption
(⋆), p can be considered as approximately constant over the balls B(x,h(x)) for all x ∈ B̃ where
B̃ = B(uB2 ) if the bulk dominates and B̃ = B if the tail dominates.

Lemma 11. Recall that h(x) = chhb(x) = (c̃A/4)1/αhb(x). Let x ∈ B̃ and y ∈ B(x,h(x)). For
all p satisfying Assumption (⋆), we have:

p(y)

p(x)
∈ [c(p),C(p)] where C(p), c(p) = 1±

(
c⋆ +

cαh(1 + δ)

c̃A

)
.

It follows that:
ω(y)

ω(x)
∈ [c(ω),C(ω)] and hb(y)

hb(x)
∈ [c(h),C(h)],

where C(h) = C(p)
2

(4−t)α+d , c(h) = c(p)
2

(4−t)α+d , C(ω) = C(p)
2αt−4α
(4−t)α+d and c(ω) = C(p)

2αt−4α
(4−t)α+d .

Proof. Let x ∈ B̃ and y ∈ B(x,h(x)) and assume that p satisfies Assumption (⋆) with the constants
c′
⋆ and L′. We have

|p(x)− p(y)| ≤ c′
⋆p(x) + L′∥x− y∥α ≤ c′

⋆p(x) + L′ cαh h
α
b (x)

≤ c′
⋆p(x) +

(1 + δ)cαh
c̃A

p(x) since on B̃ : c̃ALhb(x)α ≤ p(x).

We then take ch small enough to guarantee that (1+δ)cαh
c̃A

≤ c⋆
2 . Therefore, C(p) p0(x) ≥ p0(y) ≥

c(p) p0(x). The analogous relations for hb and ω directly follow from their definitions (3.15), (3.21).

In the sequel, we define the following notation:
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L̃ =
Ld

n2α , (3.58)

and for all u ≥ 0:
I(u) :=

∫
B(u)

p
2αt

(4−t)α+d
0 . (3.59)

so that I = I(uaux).

Lemma 12. It holds ũB ≥

c̃A L̃

Iα

 1
4α+d

(4−t)α+d
(2−t)α+d

. (3.60)

The proof follows directly from the definition of uB in (3.11) and (3.17).

Lemma 13. We have: 1
n

∫
B̃ ω(x)p0(x)2dx ≤ tn.

Proof of Lemma 13. We have by the Cauchy-Schwarz inequality:

1
n

∫
B̃
ωp2

0 =
1
n

∫
B̃
p0 h

d/2
b pr/2

0 ×
(
n2L4I

) d/2
4α+d ≤ L

2d
4α+dI

d/2
4α+d

n
4α

4α+d

(∫
B̃
p2

0h
d
b

∫
B̃
pr0

)1/2

≤
√
C7
Ctn

tn

(∫
B̃
p2

0h
d
b

)1/2
.

Moreover by Lemma 11,

p0(x)h
d
b (x) = p0(x)

h(x)d

cdh
≤ 1
cdhc

(p)

∫
B(x,h(x))

p0 ≤
1

c(p)ch
,

so that ∫
B̃
p2

0h
d
b ≤

1
c(p)ch

∫
B̃
p0 ≤

1
c(p)ch

.

Taking Ctn ≥
√

C7
c(p)ch

yields the result.

Lemma 14. It holds:
∫

B̃ L
2ω(x)h2α

b (x)dx ≤ tn.

Proof of Lemma 14. We have:

∫
B̃
L2ω(x)h2α

b (x)dx =
L

2d
4α+dI(ũB)

n
4α

4α+dI(uaux)
2α

4α+d
≤ C7
Ctn

tn,

recalling the expressions of ω(x) from (3.21), hb(x) from (3.15), tn from (3.22), and using at the
last step (if ũB = uB) I(uB) ≤ I(uaux) since uB ≥ uaux. Taking Ctn ≥ C7 yields the result.

In the remaining of the analysis of the upper bound in the bulk regime, we fix X1, . . . ,Xn a family of
iid random variables with density either p0 ∈ P(α,L, c⋆) or p ∈ P(α,L′, c′

⋆). In the whole analysis
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of the upper bound, we will use the following notation:

∆(x) := p(x)− p0(x) ∆̂(x) := p̂(x)− p0(x) and ∆̂′(x) := p̂′(x)− p0(x). (3.61)

We also define
J :=

∫
B̃
ω(x)∆(x)2dx. (3.62)

We will denote by C ′
K the constant (1 + δ)CK and by C(2)

K the constant
∫

Rd K
2.

Lemma 15. For p ∈ P(α,L′, c′
⋆), it holds 1

n

∫
B̃ ωp

2 ≤ A15tn +
B15
n J , where A15 and B15 are two

constants.

Proof of Lemma 15. Using (a+ b)2 ≤ 2a2 + 2b2 and the triangle inequality, we get:

1
n

∫
B̃
ωp2 ≤ 1

n

∫
B̃
ω[2p2

0 + 2∆2] ≤ 2tn +
2
n
J =: A15tn +

B15
n
J by Lemma 13.

Lemma 16. If J ≥ tn then we have: ETbulk ≥
(√

J −
√
tn
)2

.

Proof of Lemma 16. By the Minkowski inequality:

J =
∫

B̃
ω(x)∆(x)2dx =

∫
B̃
ω(x)

[
∆(x) + E[p̂(x)− p(x)]−E[p̂(x)− p(x)]

]2
dx

≤
[( ∫

B̃
ω(x)E2[∆̂(x)]dx

)1/2
+

(∫
B̃
ω(x)E2[p̂(x)− p(x)]dx

)1/2]2

≤
[√

ETbulk +C ′
K

√
tn
Ctn

]2
≤
[√

ETbulk +
√
tn

]2
by choosing Ctn ≥ C ′

K
2.

At the last step we used |E(p̂(x)− p(x))| ≤ CKL
′hα(x) = C ′

KLh
α(x), by [188] Proposition 1.2.

Moreover, we used Lemma 14. This yields the result, since J ≥ tn.

Lemma 17. We have: V(Tbulk) ≤
[(√

J +
√
tn
)2

+ J1/2
2

]2
−E2Tbulk where

J2 =
∫∫

B̃2
ω(x)ω(y)

1
k2 cov2

(
Kh(x)(x−X),Kh(y)(y−X)

)
dxdy. (3.63)

Proof of Lemma 17.

V(Tbulk) = E(T 2
bulk)−E2Tbulk = E

∫∫
B̃2
ω(x)ω(y) ∆̂(x)∆̂(y) ∆̂′(x)∆̂′(y) dxdy−E2Tbulk

=
∫∫

B̃2
ω(x)ω(y)E

[
∆̂(x)∆̂(y)

]2
dxdy−E2Tbulk. (3.64)

Recall that throughout Appendix 3.C, h(x) = chhb(x) where ch = (c̃A/4) 1
α . We now compute the

term E
[
∆̂(x)∆̂(y)

]2
. We have:
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E
[
∆̂(x)∆̂(y)

]
= E


1
k

k∑
i=1

(
Kh(x)(x−Xi)− p0(x)

)1
k

k∑
i=1

(
Kh(y)(y−Xi)− p0(y)

)

=
1
k2

k∑
i=1

E

{[
Kh(x)(x−Xi)− p0(x)

] [
Kh(y)(y−Xi)− p0(y)

]}
+

1
k2
∑
i ̸=j

E
[
Kh(x)(x−Xi)− p0(x)

]
E
[
Kh(y)(y−Xj)− p0(y)

]

=
1
k

E

{[
Kh(x)(x−X)− p0(x)

] [
Kh(y)(y−X)− p0(y)

]}
+
k− 1
k

E
[
Kh(x)(x−X)− p0(x)

]
E
[
Kh(y)(y−X)− p0(y)

]

= E
[
Kh(x)(x−X)− p0(x)

]
E
[
Kh(y)(y−X)− p0(y)

]
+

1
k

cov
(
Kh(x)(x−X),Kh(y)(y−X)

)
, (3.65)

so that, by the Minkowski inequality:

∫∫
B̃2
ω(x)ω(y)E

[
∆̂(x)∆̂(y)

]2
dxdy ≤ (J1/2

1 + J1/2
2 )2, (3.66)

where

J1/2
1 =

∫
B̃
ω(x)E2

[
Kh(x)(x−X)− p0(x)

]
dx, (3.67)

J2 =
∫∫

B̃2
ω(x)ω(y)

1
k2 cov2

(
Kh(x)(x−X),Kh(y)(y−X)

)
dxdy. (3.68)

Moreover, by triangular inequality and by [188], Proposition 1.1:∣∣∣∣E [Kh(x)(x−X)− p0(x)
]∣∣∣∣ ≤ |p(x)− p0(x)|+

∣∣∣E (p̂(x)− p(x)) ∣∣∣ ≤ |∆(x)|+C ′
KLh(x)

α,

Therefore, still by the Minkowski inequality:

J1/2
1 ≤

∫
B̃
ω(x)

[
|∆(x)|+C ′

KLh(x)
α
]2
dx

≤
[( ∫

B̃
ω(x)|∆(x)|2dx

)1/2
+

(∫
B̃
ω(x)C ′

K
2
L2h(x)2αdx

)1/2
]2
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≤
(√

J +
√
tn
)2

by Lemma 14, the definition of J and using ch ≤ 1. (3.69)

Equations (3.64), (3.66) and (3.69) yield the result.

Lemma 18. Let X be a random variable with density p ∈ P(α,L′, c′
⋆). If ∥x−y∥ > 1

2 [h(x)+h(y)],
then ∣∣∣∣cov

(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤ (C ′
KLh(x)

α + p(x)
) (
C ′
KLh(y)

α + p(y)
)

.

Proof of Lemma 18. We recall that by definition K has bounded support B(0, 1
2 ). In this case:

SuppKh(x)(x− ·)∩SuppKh(y)(y− ·) = ∅. Therefore, Kh(x)(x−X)Kh(y)(y−X) = 0 almost surely.
Then by [188], Proposition 1.1:∣∣∣∣cov

(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ = ∣∣∣∣E [Kh(x)(x−X)
]

E
[
Kh(y)(y−X)

]∣∣∣∣
≤
(
C ′
KLh(x)

α + p(x)
) (
C ′
KLh(y)

α + p(y)
)

.

Lemma 19. Let X be a random variable with density p ∈ P(α,L′, c′
⋆). If ∥x− y∥ ≤ 1

2 [h(x) +
h(y)] ≤ h(x) ∨ h(y) then∣∣∣∣cov

(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤ C19
p(x)

hd(x)
. (3.70)

where C19 is a constant.

Proof of Lemma 19. If ∥x− y∥ ≤ 1
2 [h(x) + h(y)] ≤ h(x) ∨ h(y), we suppose by symmetry h(y) =

h(x) ∨ h(y). Then∣∣∣∣cov
(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤ √V
(
Kh(x)(x−X)

)
V
(
Kh(y)(y−X)

)
.

Now, by [188], Proposition 1.1, the variance of the Kernel estimator Kh(x)(x−X) is upper bounded
as:

V
(
Kh(x)(x−X)

)
≤ 1
hd(x)

[
sup

B(x,h(x))
p

] ∫
Rd
K2 ≤ 1

hd(x)
C(p)C

(2)
K p(x). (3.71)

In the last inequality, we used Lemma 11. Hence, since h(y) ≥ h(x) and ∥x− y∥ ≤ h(y), we have
x ∈ B(y,h(x)) so that p(y) ≤ 1

c(p)
p(x). Thus:

∣∣∣∣cov
(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤
√
C(p)C

(2)
K p(x) ·C(p)C

(2)
K p(y)√

hd(x) · hd(x)
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≤ C(p)C
(2)
K√

c(p)

p(x)

hd(x)
=: C19

p(x)

hd(x)
. (3.72)

3.C.2 Analysis of the upper bound in the bulk regime

In the bulk regime, we recall that ψ∗
bulk rejects H0 if, and only if: Tbulk > Cψbtn. We prove the

bulk upper bound by showing that ψ∗
bulk has small type-I and type-II errors. To do so, we show

that whp under H0, Tbulk ≤ Cψbtn, whereas whp under H1: Tbulk > Cψbtn. This will be proved
by computing the expectation and variance of Tbulk under H0 in Proposition 3.7 and under H1 in
Proposition 3.8. In both cases, we then use Chebyshev’s inequality to show, in Corollary 3.1, that
under H0 Tbulk is concentrated below Cψbtn, while under H1 it is concentrated above Cψbtn.

Proposition 3.7. Under H0 we have:

•
∣∣∣E(Tbulk)

∣∣∣ ≤ tn
• V(Tbulk) ≤ CV,H0t

2
n,

where CV,H0 is a constant given in the proof.

Proposition 3.8. There exists a constant nbulk depending only on C ′
b and a constant CV,H1 such

that, whenever n ≥ nbulk and
(∫

B̃ |p− p0|t
)1/t
≥ C ′

bρ
∗
bulk, it holds:

• E(Tbulk) ≥ (1− 1/
√
C ′
b)

2J

• V(Tbulk) ≤
CV,H1
C′
b
J2.

Corollary 3.1. There exist three large constants Cψb, C ′
b, nbulk where nbulk only depends on C ′

b,
such that whenever n ≥ nbulk and

∫
B̃ |p− p0|t ≥ C ′

bρ
∗
bulk

t, it holds:

1. Pp0

(
ψ∗
bulk = 1

)
= Pp0

(
Tbulk > Cψbtn

)
≤ η

4 ,

2. Pp
(
ψ∗
bulk = 0

)
= Pp

(
Tbulk ≤ Cψbtn

)
≤ η

4 .

Proof of Proposition 3.7. We place ourselves under H0 and bound the expectation and variance of
Tbulk. We recall that p̂(x) and p̂′(x) are independent for all x ∈ B̃, and so are ∆̂(x) and ∆̂′(x).
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Expectation: By the triangle inequality:
∣∣∣E[Tbulk]

∣∣∣ = ∣∣∣∣ ∫
B̃
ω(x) E[∆̂(x)] E[∆̂′(x)]dx

∣∣∣∣ ≤ ∫
B̃
ω(x)

∣∣∣E[∆̂(x)]
∣∣∣ ∣∣∣E[∆̂′(x)]

∣∣∣dx.

Now, recalling (3.61) and (3.19), we have (see e.g. [188], Prop 1.2):∣∣∣E[∆̂(x)]
∣∣∣ ≤ CKLhαb (x) and

∣∣∣E[∆̂′(x)]
∣∣∣ ≤ CKLhαb (x), (3.73)

so that:
∣∣∣E[Tbulk]

∣∣∣ ≤ C2
KL

2
∫

B̃
ω(x)h2α(x)dx ≤ c2α

h C
2
Ktn ≤ tn,

by Lemma 14 and taking ch small enough.

Variance: By Lemma 17, the variance under H0 of Tbulk can be upper bounded as

V(Tbulk) ≤
[(√

J +CK
√
tn
)2

+ J1/2
2

]2
−E2Tbulk ≤ [CKtn + J1/2

2 ]2. (3.74)

We now analyse the covariance term in J2. There are two cases. To analyse them, introduce the
bulk diagonal:

Diag =

{
(x, y) ∈ B̃2 : ∥x− y∥ ≤ 1

2 [h(x) + h(y)]

}
. (3.75)

First case: ∥x− y∥2 > 1
2 [h(x) + h(y)] i.e. (x, y) /∈ Diag.

By Lemma 18, and recalling that ∀x ∈ B̃ : c̃ALhα(x) ≤ p0(x) we have

1
k

∣∣∣∣cov
(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤ 1
k

[
CKLh(x)

α + p0(x)
] [
CKLh(y)

α + p0(y)
]

≤ 1
k

(
CK
c̃A

+ 1
)2
p0(x)p0(y). (3.76)

Second case: ∥x− y∥ ≤ 1
2 [h(x) + h(y)] ≤ h(x) ∨ h(y), i.e. (x, y) ∈ Diag.

We suppose by symmetry h(y) = h(x) ∨ h(y). Then by Lemma 19:

1
k

∣∣∣∣cov
(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤ C19
p0(x)

k hd(x)
.
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Putting together the above equation with (3.65) and (3.76), we get:

E
[
∆̂(x)∆̂(y)

]
≤ C2

KL
2h(x)αh(y)α + 1Diagc

1
k

(
CK
cA

+ 1
)2
p0(x)p0(y) + 1DiagC19

p0(x)

k h(x)d
.

(3.77)

We now combine (3.77) with (3.64) and use Minkowski’s inequality:

V(Tbulk) ≤
{(∫∫

B̃2
ω(x)ω(y)

[
C2
KL

2h(x)αh(y)α
]2
dxdy

)1/2
+

(∫∫
B̃2
ω(x)ω(y)

[
1Diagc

1
k

(
CK
c̃A

+ 1
)2
p0(x)p0(y) + 1DiagC19

p0(x)

k h(x)d

]2

dxdy

)1/2


2

≤

CKtn + 2
(
CK
c̃A

+ 1
)2
tn +

(∫∫
B̃2
ω(x)ω(y)

[
1DiagC19

p0(x)

k h(x)d

]2

dxdy

)1/2


2

. (3.78)

The last step is obtained by using Lemmas 13 and 14. We now analyse the term C2
19
∫∫
D ω(x)ω(y)

[
p0(x)
k h(x)d

]2
dxdy.

By Lemma 20 (at the end of Appendix 3.C):

∫∫
Diag

ω(x)ω(y)

[
p0(x)

k h(x)d

]2

dxdy ≤ 2C(ω)
∫

B̃
ω(x)2h(x)d

[
p0(x)

k h(x)d

]2

dx = 8C
(ω)

c(h)
d
t2n,

by immediate calculation, recalling that n = 2k. Therefore, by equation (3.78), we have

VTbulk ≤

CKtn + 2
(
CK
cA

+ 1
)2
tn +C19

√
8C

(ω)

c(h)
d
tn

2

=: CV,H0t
2
n. (3.79)

Analysis of the test statistic under H1.

Proof of Proposition 3.8.

Suppose the data (X1, . . . ,Xn) is drawn from a probability density p satisfying:

C ′
b
t
ρ∗
bulk

t ≤
∫

B̃
|p− p0|t. (3.80)
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Expectation: We first prove J ≥ tn in order to apply Lemma 16. We recall that L′ = (1 + δ)L.
From Equation (3.80) we get:

C ′
b
t

L d
4α+dI

1
t
− α

4α+d

n
2α

4α+d

t = C ′
b
t
ρ∗
bulk

t ≤
∫

B̃
|∆|t =

∫
B̃

[
ω(x)∆(x)2

] t
2 ω(x)− t

2dx

≤
Hölder

[∫
B̃
ω(x)∆2(x)dx

] t
2
[∫

B̃
ω− t

2−t

] 2−t
2

, (3.81)

where we have applied Hölder’s inequality with u = 2
t and v = 2

2−t satisfying 1
u +

1
v = 1. Hence:

J =
∫

B̃
ω(x)∆2(x)dx ≥ C ′

b
2

L d
4α+dI

1
t
− α

4α+d

n
2α

4α+d

2

×
(∫

B̃

1
ω

t
2−t

)− 2−t
t

≥ C ′
b
2
C
t−2
t

7
tn
Ctn
≥ C ′

btn. (3.82)

Taking C ′
b large enough yields J ≥ tn, hence we can apply Lemma 16 which yields

ETbulk ≥
(√

J −
√
tn
)2
≥
(√

J −
√
J

C ′
b

)2
= (1− 1/

√
C ′
b)

2J , (3.83)

where we recall that C ′
b can be taken arbitrarily large.

Variance:

We still have by Lemma 17 and by (3.83):

V(Tbulk) ≤
[(√

J +
√
tn
)2

+ J1/2
2

]2
−E2Tbulk (3.84)

≤
[(√

J +
√
tn
)2

+ J1/2
2

]2
−
(√

J −
√
tn
)4

, (3.85)

where
J2 =

∫∫
B̃2
ω(x)ω(y)

1
k2 cov2

(
Kh(x)(x−X),Kh(y)(y−X)

)
dxdy.

We now compute J2. We have
J2 = JDiag + JDiagc (3.86)

where

JDiag =
∫∫

Diag
ω(x)ω(y)

1
k2 cov2

(
Kh(x)(x−X),Kh(y)(y−X)

)
dxdy, (3.87)

JDiagc =
∫∫

Diagc
ω(x)ω(y)

1
k2 cov2

(
Kh(x)(x−X),Kh(y)(y−X)

)
dxdy, (3.88)

We examine JDiag and JDiagc separately.
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Term JDiagc . We have outside the diagonal Diag: ∥x− y∥ > 1
2 [h(x) + h(y)].

By Lemma 18, and using c̃A
cα
h
Lhα ≤ p0 on B̃:

1
k

∣∣∣∣cov
(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤ 1
k

(
C ′
KLh(x)

α + p(x)
) (
C ′
KLh(y)

α + p(y)
)

≤ 1
k

[(
C ′
Kc

α
h

c̃A
+ 1

)
p0(x) + |∆(x)|

][(
C ′
Kc

α
h

c̃A
+ 1

)
p0(y) + |∆(y)|

]
=:

1
k

[
C(c)p0(x) + |∆(x)|

][
C(c)p0(y) + |∆(y)|

]
,

where C(c) =
C′
Kc

α
h

c̃A
+ 1. Therefore, outside the diagonal (3.75), we have:

JDiagc =
1
k2

∫∫
Diagc

ω(x)ω(y)cov2
(
Kh(x)(x−X),Kh(y)(y−X)

)
dxdy

≤ 1
k2

∫∫
Diagc

ω(x)ω(y)

[
C(c)p0(x) + |∆(x)|

]2[
C(c)p0(y) + |∆(y)|

]2
dxdy

=

[
1
k

∫
B̃
ω(x)

(
C(c)p0(x) + |∆(x)|

)2
dx

]2

≤
[

1
k

∫
B̃
ω(x)

(
C(c)2p2

0(x) + |∆(x)|2
)
dx

]2

≤ 4
k2

(
C(c) tn + J

)2
by Lemma 13

≤ 16
n2

(
C(c)

C ′
b

+ 1
)2

J2 =:
CDiagc

n2 J2. (3.89)

For JDiag: If ∥x− y∥ ≤ 1
2 [h(x) + h(y)] ≤ h(x) ∨ h(y), we suppose by symmetry h(y) = h(x) ∨

h(y). Then by Lemma 19, we have:

1
k

∣∣∣∣cov
(
Kh(x)(x−X),Kh(y)(y−X)

)∣∣∣∣ ≤ C19
p(x)

k hd(x)
.

Therefore:

JDiag =
1
k2

∫∫
B̃2
ω(x)ω(y) cov2

(
Kh(x)(x−X),Kh(y)(y−X)

)
dxdy ≤

∫∫
Diag2

ω(x)ω(y)

[
C19

p(x)

k hd(x)

]2

dxdy.

By Lemma 20, we can upper bound the term as:

JDiag
C2

19
≤
∫∫

Diag
ω(x)ω(y)

[
p(x)

k h(x)d

]2

dxdy ≤ 2C(ω)
∫

B̃
ω(x)2h(x)d

[
p(x)

k h(x)d

]2

dx
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≤ 2C
(ω)

cdh

∫
B̃

ω(x)2

k2h(x)d
[2p0(x)

2 + 2∆2(x)]dx ≤ 16 C
(ω)

cdh
t2n + 16C

(ω)

cdh

∫
B̃

ω(x)2∆2(x)

n2hdb (x)
dx︸ ︷︷ ︸

Term I

.

(3.90)

Term I: We recall that by definition we have p0 ≥ ũB on B̃ and we have 2αt− 2d− 4α < 0 since
t ∈ [1, 2]. Therefore:

1
k2

∫
B̃
ω2(x)

∆(x)2

hdb (x)
dx =

1
n2

∫
B̃
(n2L4I)

d
4α+d p

2αt−2d−4α
(4−t)α+d

0 ω(x)∆(x)2dx

≤ (n2L4I)
d

4α+d

n2

∫
B̃
ω(x)∆(x)2 ũB

2αt−2d−4α
(4−t)α+d dx

≤ (n2L4I)
d

4α+d

n2

∫
B̃
ω(x)∆(x)2

[
c̃A

Ld

n2αIα

] 1
4α+d

(4−t)α+d
(2−t)α+d

2αt−2d−4α
(4−t)α+d

= c̃ tn

∫
B̃
ω(x)∆(x)2 = c̃ tnJ .

where c̃ = c̃A
− 1

4α+d
−2αt+2d+4α
(2−t)α+d . Therefore, by equation (3.90):

JDiag ≤ C19

[
16C

(ω)

cdh
t2n + 16C

(ω)

cdh
c̃tnJ

]
=: ADiagt

2
n +BDiagtnJ , (3.91)

for two constants ADiag and BDiag. By equations (3.89) and (3.91), it holds:

J2 ≤ AJ2 t
2
n +BJ2 tnJ +CJ2

J2

n2 , (3.92)

for three constants AJ2 ,BJ2 ,CJ2 > 0. Recalling Equation (3.82), we can further upper bound J2

as J2 ≤ AJ2J
2/C ′

b
2 +BJ2 J

2/C ′
b +CJ2

J2

n2 , hence taking nbulk :=
⌈√

C ′
b

⌉
, we get:

J2 ≤
AJ2 +BJ2 +CJ2

C ′
b

J2 =:
D2
J2

C ′
b

J2. (3.93)

It then follows, from Equation (3.85):

VTb ≤
[(√

J +
√
tn
)2

+ J1/2
2

]2
−
(√

J −
√
tn
)4

≤
[(√

J +

√
J

C ′
b

)2
+
DJ2√
C ′
b

J

]2
−
(√

J −
√
J/C ′

b

)4
by Equation (3.82) and (3.93)
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= J2


[
1 + 2 +DJ2

C ′
b

+
1 2

C ′
b

]2

−

1− 4 1√
C ′
b

+O

(
1
C ′
b

)


≤ J2
[

8 + 2DJ2 + 1
C ′
b

]
for C ′

b large enough

=:
CV,H1

C ′
b

J2.

3.C.3 Proof of Corollary 3.1

Proof of Corollary 3.1.

1. Set Cψb > 1. It holds:

Pp0

(
Tbulk > Cψbtn

)
≤ Pp0

(
|Tbulk −ETbulk| > (Cψb − 1)tn

)
by Proposition 3.7

≤ CV,H0t
2
n

(Cψb − 1)2t2n
by Proposition 3.7 and Chebyshev’s inequality

≤ η

4 for Cψb larger than a suitable constant.

2. Assume C ′
b is large enough to ensure

(1− 1/
√
C ′
b)

2 >
Cψb
C ′
b

. (3.94)

The value of the constant C ′
b being given, assume moreover that n ≥ nbulk. We then have:

Pp

(
Tbulk ≤ Cψbtn

)
≤ Pp

(
Tbulk −ETbulk ≤ Cψbtn − (1− 1/

√
C ′
b)

2J

)
by Proposition 3.8

≤ Pp

(
Tbulk −ETbulk ≤

Cψb
C ′
b

J − (1− 1/
√
C ′
b)

2J

)
by Equation (3.82)

≤ Pp

(
|Tbulk −ETbulk| ≤ (1− 1/

√
C ′
b)

2J − Cψb
C ′
b

J

)
by Equation (3.94)

≤ CV,H1J
2/C ′

b(
(1− 1/

√
C ′
b)

2 − Cψb
C′
b

)2
J2

by Chebyshev’s inequality

≤ η

4 for C ′
b large enough.

Lemma 20. For any p ∈ P(α,L) it holds:
∫∫

Diag ω(x)ω(y)

[
p(x)
k h(x)d

]2
dxdy ≤ 2C(ω)

∫
B̃ ω(x)

2h(x)d
[

p(x)
k h(x)d

]2
dx.
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Proof of Lemma 20. We set:

Diag+ =
{
(x, y) ∈ Diag : p0(x) ≥ p0(y)

}
. (3.95)

On Diag+, we have ∥x− y∥ ≤ h(x) ∨ h(y) = h(x) so in particular: y ∈ B(x,h(x)). We therefore
have:∫∫

Diag

ω(x)ω(y)p2(x)

k2 h(x)2d dxdy = 2
∫∫

Diag+

ω(x)ω(y)p2(x)

k2 h(x)2d dxdy ≤ 2
∫

B̃
ω(x)

[
p(x)

k h(x)d

]2 [∫
B(x,h(x))

ω(y)dy

]
dx

≤ 2
∫
x∈B̃

ω(x)

[
p(x)

k h(x)d

]2 {
h(x)dC(ω)ω(x)

}
dx = 2C(ω)

∫
B̃
ω(x)2h(x)d

[
p(x)

k h(x)d

]2

dx.

3.D Lower bound in the bulk regime: Proof of Proposition 3.2
We here define the bulk prior. Fix c a constant, allowed to be arbitrarily small. We apply Algorithm

3, with Ω̃, β = 2
(4−t)α+d , u = uB, cβ = c−β

(
n2L4I

) β
4α+d and set cα = cAc

−α. Following the
notation from Algorithm 3, let h = (p0/cβ)1/β. The choice of the constants ensures h ≤ chb and
p0 ≥ cαLh

α over B(uB). Moreover, c is chosen small enough to ensure cα ≥
√
d
α
(21−α∨1)

1/2−c⋆ . Since Ω
is unbounded, we can moreover choose a subset Ω̃ large enough to ensure that it is split at least
once by Algorithm 3. Therefore, the guarantees of Proposition 3.6 are ensured. Let j ∈ {1, . . . ,N}
and consider the cell Bj . Its center is denoted by xj and we also set hj = chb(xj)/4 where c
is the constant used to define the constants cα, cβ taken as inputs for Algorithms 3. We also set
→
1 = (1, . . . , 1). Define the perturbation function f ≥ 0 over Rd, such that f ∈ H(α, 1) ∩C∞, f is
supported over

{
x ∈ Rd : ∥x∥ < 1/2

}
. We define the perturbations (ϕj)Nj=1 as follows:

ϕj(x) = C(ϕ)Lhαj f

(
x− xj − hj√

d

→
1

hj

)
−C(ϕ)Lhαj f

(
x− xj + hj√

d

→
1

hj

)
, (3.96)

where C(ϕ) is a small enough constant. For ϵ = (ϵ1, . . . , ϵN ) where ϵj iid∼ Rad( 1
2 ), the prior is defined

as follows:

p(n)ϵ = p0 +
N∑
j=1

ϵjϕj . (3.97)

For clarity, we give the probability density over Ωn corresponding to data drawn from this prior
distribution. Assume that (X ′

1, . . . ,X ′
n) are drawn from (3.97). The data is therefore iid with the

same density q, itself uniformly drawn in the set {pϵ | ϵ ∈ {±1}n}. In other words, the density of
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(X ′
1, . . . ,X ′

n) corresponds to the mixture

p̃ =
1

2N
∑

ϵ∈{±1}N

(
p0 +

N∑
j=1

ϵjϕj

)⊗n
,

where, for any q ∈ P(α,L), q⊗n is defined by q⊗n(x1, . . . ,xn) = q(x1) . . . q(xn) and represents the
density of (Y1, . . . ,Yn) when Yi

iid∼ q.

The lower bound will be proved by showing that there exist no test with risk smaller than η for
the testing problem H0 : (X ′

1, . . . ,X ′
n) ∼ p⊗n

0 vs H ′
1 : (X ′

1, . . . ,X ′
n) ∼ p̃. Whenever no ambiguity

arises, we will just write pϵ instead of p(n)ϵ . Recalling that L′ = (1 + δ)L and c′
⋆ = (1 + δ)c⋆,

the following proposition states that this prior is admissible, i.e. that each one of these densities
belongs to P(α,L′, c′

⋆).
Proposition 3.9. For all ϵ = (ϵ1, . . . , ϵN ) ∈ {±1}: pϵ ∈ P(α,L′, c′

⋆).
We now prove that this prior distribution gives a lower bound on ρ∗

bulk. This lower bound will be
denoted by ρLBbulk, defined as the Lt norm of the perturbation:

ρLBbulk =
∥∥∥ N∑
j=1

ϕj
∥∥∥
t
. (3.98)

Then by definition, ∀ϵ ∈ {±1}N : pϵ ∈ H1(ρLBbulk). Moreover, the following Proposition states that
the prior we consider yields a lower bound of order ρ∗

bulk:
Proposition 3.10. There exists a constant CLBbulk given in the Appendix, such that

ρLBbulk = CLBbulk ρ
∗
bulk.

We now introduce the Bayes risk associated with the prior distribution (3.97):
Definition 3.2. Define

R bulk
B = inf

ψ test

{
Pp0(ψ = 1) + Eϵ

[
Ppϵ(ψ = 0)

]}
,

where the expectation is taken with respect to the realizations of ϵ and Ppe denotes the probability
distribution when the data is drawn with density (3.97).
As classical in the minimax framework, we have R∗(ρLBbulk) ≥ R bulk

B (indeed, the supremum in (3.6)
can be lower bounded by the expectation over ϵ). The following proposition states that ρLBbulk is
indeed a lower bound on ρ∗

bulk:
Proposition 3.11. It holds R bulk

B > η.
Indeed, Proposition 3.11 proves that R∗(ρLBbulk) > η. Since R∗(ρ) is a decreasing function of ρ, we
therefore have ρ∗ > ρLBbulk by the definition of ρ∗ in equation (3.7). This ends the proof of Proposi-
tion 3.2
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3.D.1 Proof of Proposition 3.9

Proof of Proposition 3.9. First, for each j = 1, . . . ,N the functions C(ϕ)L

(
hj −

∥∥∥x−xj ± hj√
d

→
1
∥∥∥)α

+

are in H(α,C(ϕ)L) and have disjoint support so that their sum also belongs to H(α,C(ϕ)L). Hence

for all ϵ ∈ {±1}N ,
N∑
j=1

ϵjϕj ∈ H(α,C(ϕ)L), proving that pϵ ∈ H(α, (1 +C(ϕ))L).

Now, note that we have:

∀x ∈ B
(
uB
2

)
: Lhb(x)

α ≤ 2
(2−t)α+d
(4−t)α+d

cA
p0(x). (3.99)

Let ϵ ∈ {±1}N and x ∈ Bj , for some j ∈ {1, . . . ,N}. Recalling that hj = c hb(xj) we have:

|ϕj(x)| ≤ C(ϕ)∥f∥1Lhαj = C(ϕ)∥f∥1cαLhb(xj)α

≤ C(ϕ)∥f∥1cαC
(p0)
21 Lhb(x)

α by Lemma 21

≤ 2
(2−t)α+d
(4−t)α+d

cA
C(ϕ)∥f∥1cαC

(p0)
21 p0(x) by equation (3.99)

=: λ p0(x).

Therefore, by Lemma 22, we have p+∑ ϵjϕj ∈ P(α, (1 + λ)L, c⋆+2λ+λc⋆
1−λ ). Choosing the constant

λ small enough (by adjusting C(ϕ)), we can ensure pϵ ∈ P(α,L′, c′
⋆) where L′ = (1 + δ)L and

c′
⋆ = (1 + δ)c⋆.

3.D.2 Proof of Proposition 3.10

Proof of Proposition 3.10. Since the ϕj have disjoint support:
∥∥∥∑N

j=1 ϕj
∥∥∥
t
=
∑N
j=1

∥∥∥ϕj∥∥∥
t
. Let

j ∈ {1, . . . ,N}. We have:

∥ϕj∥tt = 2
∫
Bj

{
C(ϕ)Lhαj f

(
x− xj − hj√

d

→
1

hj

)}t
dx

= 2
(
C(ϕ)L∥f∥t

)t
hαt+dj

≥ 2
(
C(ϕ)L∥f∥t

)t cαt

C
(h)
21

αt

∫
Bj

hαtb by Lemma 21

=: CLBbulkL
t
∫
Bj

hαtb
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where CLBbulk = 2 cαt C(ϕ)t

C
(h)
21

αt ∥f∥tt, so that

ρLBBulk
t
= CLBbulkL

t
∫

∪Nj=1Bj
hαtb ≥ CLBbulkLt

∫
B(uB)

hαtb = CLBbulkρ
∗
bulk

t,

where

ρ∗
bulk =

(
Ld

n2αIα

) t
4α+d ∫

B(uB)
pr0. (3.100)

Now, if uB = uaux then ρ∗
bulk = ρ∗

bulk. Otherwise, if uB > uaux ,we have by Lemma 2 and Lemma 6:
ρ∗
tail ≍ ρ∗

tail ≥ C2ρ∗
bulk ≥ ρ∗

bulk. Therefore: ρ∗
bulk + ρ∗

tail ≍ ρ∗
bulk + ρ∗

tail.

3.D.3 Proof of Proposition 3.11

Proof of Proposition 3.11. As classical in the minimax literature we always haveR∗(ρLBbulk) ≥ R bulk
B =

1− dTV (p⊗n
0 , p(n)ϵ ). Moreover, by Pinsker’s inequality (see e.g. [188]) we have dTV (p⊗n

0 , p(n)ϵ ) ≤
1
2

√
χ2
(
p
(n)
ϵ ||p⊗n

0

)
, therefore: R bulk

B ≥ 1− 1
2

√
χ2
(
p
(n)
ϵ ||p⊗n

0

)
. To prove that R bulk

B > η, it therefore

suffices to prove that χ2
(
p
(n)
ϵ ||p⊗n

0

)
< 4(1− η)2. We recall that by Proposition 3.6 item 3, we have:

B(uB) ⊂
N⋃
j=1

Bj ⊂ B(
uB
2 ). (3.101)

We now compute 1 + χ2
(
p
(n)
ϵ ||p⊗n

0

)
.

1 + χ2
(
p(n)ϵ ||p⊗n

0

)
=
∫

Ωn

(
1

2N
∑
ϵ∈{±1}N

∏n
i=1 pϵ(yi)

)2

∏n
i=1 p0(yi)

dy1 . . . dyn

=
1

4N
∫ ∑

ϵ,ϵ′∈{±1}N

n∏
i=1

pϵ(yi)pϵ′(yi)

p0(yi)
dy1 . . . dyn

=
1

4N
∫

Ωn

∑
ϵ,ϵ′∈{±1}N

n∏
i=1

(
p0(yi) +

∑N
j=1 ϵjϕj(yi)

)(
p0(yi) +

∑N
j=1 ϵ

′
jϕj(yi)

)
p0(yi)

dy1 . . . dyn

=
1

4N
∑

ϵ,ϵ′∈{±1}n

∫
Ω
p0(x) +

N∑
j=1

(ϵj + ϵ′j)ϕj(x) +
N∑
j=1

ϵjϵ
′
j

ϕ2
j (x)

p0(x)
dx

n

=
1

4N
∑

ϵ,ϵ′∈{±1}n

1 +
N∑
j=1

ϵjϵ
′
j

∫
Ω

ϕ2
j (x)

p0(x)
dx

n

130



CHAPTER 3. GOODNESS-OF-FIT TESTING FOR HÖLDER-CONTINUOUS DENSITIES

≤ 1
4N

∑
ϵ,ϵ′∈{±1}n

exp
(
n

N∑
j=1

ϵjϵ
′
j

∫
Ω

ϕ2
j (x)

p0(x)
dx
)

=
N∏
j=1

1
4

∑
ϵj ,ϵ′j∈{±1}

exp
(
nϵjϵ

′
j

∫
Ω

ϕ2
j (x)

p0(x)
dx
) =

N∏
j=1

cosh
(
n

∫
Ω

ϕ2
j (x)

p0(x)
dx
)

≤ exp
(1

2

N∑
j=1

n2
( ∫

Ω

ϕ2
j (x)

p0(x)
dx
)2
)

(3.102)

≤ exp
(1

2

N∑
j=1

n2C(ϕ)4C̃L4
∫
Bj

h 4α+d
b

p2
0

)
by Lemma 23

≤ exp
(1

2n
2C(ϕ)4C̃L4 1

n2L4I

∫
B(

uB
2 )
pr0

)
by equation (3.101)

≤ exp
(1

2n
2C(ϕ)4C̃L4C7

I
n2L4I

)
by Lemma 7

= exp
(
C(ϕ)4C̃

)
≤ 1 + 4(1− η)2 for C(ϕ) ≤

( 1
C̃

log(1 + 4(1− η)2)

) 1
4
.

3.D.4 Technical results for the LB in the bulk regime

We recall that in this section, cα = cAc
−α, where c is a constant chosen small enough to ensure

cα ≥
√
d
α
(21−α∨1)

1/2−c⋆ .

Lemma 21. Let j ∈ {1, . . . ,M} and x ∈ Bj. Denote by xj the center of Bj. Then p0(x)
p0(xj)

∈[
c
(p0)
21 ,C(p0)

21

]
where c(p0)

21 = 1
2 and C(p0)

21 = 3
2 are two constants. It follows that hb(x)

hb(xj)
∈
[
c
(h)
21 ,C(h)

21

]
where c(h)21 =

(
1
2

) 2
(4−t)α+d and C(h)

21 =
(

3
2

) 2
(4−t)α+d are two constants.

Proof of Lemma 21. The proof follows from Assumption (⋆):

|p0(x)− p0(xj)| ≤ c⋆p0(xj) + L(e(Bj)
√
d)α ≤ c⋆p0(xj) + Lhα(xj)

√
d
α

≤
(
c⋆ +

√
d
α

cα

)
p0(xj) ≤

p0(xj)

2 .

Lemma 22. Let p : Ω −→ R+ satisfying Assumption (⋆). Let ϕ : Ω → R in H(α,µL) for some
constant µ > 0 and such that |ϕ| ≤ λp over Ω for some constant λ > 0. Then

p+ ϕ ∈ P
(
α, (1 + λ∨ µ)L, c⋆ + 2λ+ λc⋆

1− λ
)
.
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Proof of Lemma 22. Clearly, p+ ϕ ∈ H(α, (1+ µ)L) ⊂ H(α, (1+ µ∨ λ)L). Now, let x, y ∈ Ω. By
Assumption (⋆) and the triangular inequality, we have:

|p(x) + ϕ(x)− p(y)− ϕ(y)| ≤ |p(x)− p(y)|+ |ϕ(x)|+ |ϕ(y)|
≤ c⋆p(x) + L∥x− y∥α + 2λp(x) + λ[p(y)− p(x)]
≤ (c⋆ + 2λ)p(x) + L∥x− y∥α + λ(c⋆p(x) + L∥x− y∥α)
≤ (c⋆ + 2λ+ λc⋆)p(x) + (1 + λ)L∥x− y∥α

≤ c⋆ + 2λ+ λc⋆
1− λ [p(x) + ϕ(x)] + (1 + λ∨ µ)L∥x− y∥α.

Lemma 23. There exist two constants c(ϕ),C(ϕ) > 0 such that for all j = 1, . . . ,N :(∫
Ω

ϕ2
j

p0

)2
≤ C̃ C(ϕ)4L4

∫
Bj

h 4α+d
b

p2
0

,

where C̃ is a constant given in the proof.

Proof of Lemma 23. Recall that ϕj is supported on Bj . By Lemma 21,(∫
Ω

ϕ2
j

p0

)2
=

(∫
Bj

ϕ2
j

p0

)2
≤
∫
Bj

ϕ4
j

p2
0
hdb ·

∫
Bj

1
hdb

by Cauchy-Schwarz’ inequality

≤
hdj

p0(xj)2
C

(h)
21

d

c d c
(p0)
21

2

∫
Bj

ϕ4
j ×

1

c
(h)
21

d

cd

hdj
|Bj |

≤
hdj

p0(xj)2
C

(h)
21

d

c
(p0)
21

2
c
(h)
21

d

∫
Bj

ϕ4
j . (3.103)

Moreover, by the change of variable y = (x− xj)/hj we have∫
Bj

ϕ4
j = 2

∫
Rd

{
C(ϕ)Lhαj f(y)

}4
hdjdy = 2

(
C(ϕ)L

)4
∥f∥44 h4α+d

j .

Injecting into (3.103) we get:

∫
Ω

ϕ2
j

p0
≤ 2C(ϕ)4 C

(h)
21

d

c
(p0)
21

2
c
(h)
21

d
· ∥f∥44 L4 h4α+d

j

p0(xj)2h
d
j

≤ 2C(ϕ)4 C
(h)
21

d

c
(p0)
21

2
c
(h)
21

d
· ∥f∥44 L4

∫
Bj

hb(x)
4α+d

p2
0(x)

dx
c4α+dC

(p0)
21

2

c
(h)
21

4α+d

=: C(ϕ)4C̃L4
∫
Bj

h 4α+d
b

p2
0

.
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3.E Upper bound in the tail regime
In the tail regime, we show that the combination of the tests ψ1 and ψ2 has both type-I and
type-II errors upper bounded by η/4 when

(∫
T |p− p0|t

)1/t
≥ C ′′ρ∗ for some constant C ′′. We

defer to Subsection 3.E.4 the technical results needed for proving this upper bound. We recall
that T = T (uB) but that we place ourselves over a covering of T (ũB). Until the end of the
proof, whenever no ambiguity arises, we drop the indexation in

⋃M
j=1 C̃j and only write

∥p0∥1, ∥p∥1, ∥∆∥1 to denote
∫⋃M

j=1 C̃j
p0,

∫⋃M

j=1 C̃j
p, and

∫⋃M

j=1 C̃j
|∆| respectively. Moreover,

in Appendix 3.E only, we will write h for htail(uB) when the tail dominates and h = hm
when the bulk dominates.

3.E.1 Under H0

We here prove that ψ1 ∨ψ2 has a type-I error upper bounded by η/2, no matter whether the bulk
or the tail dominates.

By Lemma 24, the type-I error of ψ2 is upper bounded by

Pp0(ψ2 = 1) ≤ n2hd
∫⋃

j∈N∗ C̃j
p2

0 ≤ C24 ≤
η

8 taking C24 small enough. (3.104)

As to the type-I error of ψ1, we have under H0:

E

[ ∑
j∈N∗

Nj

n

]
= ∥p0∥1 and V

[ ∑
j∈N∗

Nj

n

]
≤ ∥p0∥1

n
.

Recalling that we write ∥p0∥1 for
∫⋃

j∈N∗ C̃j
p0, we therefore have by Chebyshev’s inequality:

Pp0

∣∣∣∣ ∑
j∈N∗

Nj

n
− ∥p0∥1

∣∣∣∣ > Cψ1

√
∥p0∥1
n

 ≤ η

4 . (3.105)

for Cψ1 = 2
√

2/
√
η. Combining (3.104) and (3.105), we conclude that ψ1 ∨ ψ2 has type-I error

upper bounded by η/4.

3.E.2 Under the alternative when the tail dominates

We now prove that when the tail dominates, ρ∗
tail+ ρ∗

r is an upper bound on the minimax separation
radius. To do so, we show that when p is such that

∫
T |p− p0|t ≥ C ′′

(
ρ∗
tail

t + ρ∗
r
t
)
, one of the two
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tests ψ1 or ψ2 rejects H0, whp. Fix a density p satisfying:

∫
T
|p− p0|t ≥ C ′′ρ∗

tail
t ≥ C̃ ′′

(
Ld

n2α

) t−1
α+d

(∫
T
p0 +

1
n

) (2−t)α+d
α+d

≥ C̃ ′′
(∫

T
p0 +

1
n

)2−t
[
Ld

n2α

(∫
T
p0

)d] t−1
α+d

. (3.106)

where C̃ ′′ = C ′′/2
(2−t)α+d
α+d and C ′′ is a large enough constant.

Setting u = 2− t and v = t− 1 satisfying u+ v = 1 and u+ 2v = t, we have by Hölder’s inequality:∫
T
|p−p0|t =

∫
T
|p−p0|u+2v ≤

[ ∫
T
|p−p0|

]u[ ∫
T
|p−p0|2

]v
≤
[ ∫⋃M

j=1 C̃j
|p−p0|

]u[ ∫⋃M

j=1 C̃j
|p−p0|2

]v
.

Then by (3.106), one of the following two inequalities must hold:

(i)
∫⋃M

j=1 C̃j
|p− p0| ≥ C ′′

1

(∫
T
p0 +

1
n

)

(ii)
∫⋃M

j=1 C̃j
|p− p0|2 ≥ C ′′

2

[
Ld

n2α

(∫
T
p0

)d] 1
α+d

=
C ′′

2
n2hdtail(uB)

.

where C ′′
1 and C ′′

2 are two constants given in the proof, such that C ′′
1C

′′
2 = C̃ ′′.

First case: Suppose that (i) holds, i.e. ∥∆∥1 ≥ C ′′
1
(∫

T p0 +
1
n

)
. We then have

∥∆∥1 ≥ C ′′
1
(

1
n + 1

1+C8

∫
T (2uB) p0

)
≥ C27(∥p0∥1 + 1/n) for C ′′

1 large enough. Therefore, by Lemma
27, we have Pp(ψ1 = 0) ≤ η

8 .

Second case: Suppose (i) does not hold. Then (ii) holds. By Lemma 28, we can write:

∫⋃M

j=1 C̃j
(p− p0)

2 ≤ A28
hd

M∑
j=1

(∫
C̃j

p

)2
+

B28
n2hd

+C28Lh
α
∫⋃M

j=1 C̃j
|p− p0|,

Since (i) does not hold we can further upper bound this expression as:

∫⋃M

j=1 C̃j
(p− p0)

2 ≤ A28
hd

M∑
j=1

(∫
C̃j

p

)2
+

B28
n2hd

+C28Lh
α ·C ′′

1

∫
T
p0

≤ A28
hd

M∑
j=1

(∫
C̃j

p

)2
+

B28
n2hd

+C28
C ′′

1
n2hd

.
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By (ii) we therefore have:

A28
hd

M∑
j=1

(∫
C̃j

p

)2
+

B28
n2hd

+
C28C ′′

1
n2hd

≥ C ′′
2

n2hd

hence:
A28
hd

M∑
j=1

(∫
C̃j

p

)2
≥ C ′′

2 −C28C ′′
1 −B28

n2hd
=:

A28C ′′
3

n2hd

i.e.
M∑
j=1

(∫
C̃j

p

)2
≥ C ′′

3
n2 (3.107)

Taking C ′′
2 large enough ensures that C ′′

3 ≥ C29, so that by Lemma 29, we have Pp(ψ2 = 0) ≤ η
8 .

3.E.3 Under H1(C ′′ρ∗
bulk) when the bulk dominates

We now suppose that CBTρ∗
bulk ≥ ρ∗

tail. Moreover, we suppose
∫

Ω |p− p0|t ≥ C ′′
(
ρ∗
bulk

t + ρ∗
r
t
)

for
C ′′ large enough. If

∫
B(uB/2) |p− p0|t ≥ C′′

2

(
ρ∗
bulk

t + ρ∗
r
t
)
, then for C ′′ large enough, Pp(ψ∗

bulk =

0) ≤ η
4 by the analysis of the upper bound. Therefore, wlog, suppose that

∫
B(uB/2) |p− p0|t ≤

C′′

2

(
ρ∗
bulk

t + ρ∗
r
t
)
, hence that

∫
T (uB/2) |p− p0|t ≥ C′′

2

(
ρ∗
bulk

t + ρ∗
r
t
)
.

Assume first that ∥p0∥1 ≤ 1
n . Then we have ∥p∥t ≥

(
C′′

2

)1/t
ρ∗
r − ∥p0∥t ≥

(
C′′

2 −A49(1)
)
ρ∗
r by

Lemma 49. Taking C ′′ large enough imposes ∥p∥1 ≥ 2C27
n ≥ C27

(
1
n + ∥p0∥1

)
hence Pp(ψ1 = 0) ≤ η

8
by Lemma 27.

Now, in the remaining of the proof, assume ∥p0∥1 > 1
n . Again, there are two cases.

First case: If ∥∆∥1 ≥ 2C27∥p0∥1 ≥ C27(∥p0∥1 + 1
n ), then by Lemma 27: Pp(ψ1 = 0) ≤ η

8 .

Second case: Assume now that ∥∆∥1 ≤ 2C27∥p0∥1, hence that ∥p∥1 ≤ (2C27 + 1)∥p0∥1. By
Assumption (⋆), the definition of hm from (3.24) and the choice of cm, we can immediately check
that ⋃

j∈N∗
C̃j ⊂ T (uB). Hence ∥p∥1 ≤ (2C27 + 1)

∫
T (uB) p0 = (2C27 + 1) 1

Lhα+d
tail

. We can now lower

bound ∑
j∈N∗

n2q2
j using Lemma 28:

∫⋃M

j=1 C̃j
(p− p0)

2 ≤ A28
hdm

∑
j∈N∗

(∫
C̃j

p

)2
+

B28
n2hdm

+C28(2C27 + 1) Lh
α
m

Lhα+dtail

(3.108)

≤ A28
hdm

∑
j∈N∗

(∫
C̃j

p

)2
+

B28 +
C28(2C27 + 1)

C
(2)
BT

α+d

 1
n2hdm

by Lemma 10 (3.109)
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=:
Aψ2

hdm

∑
j∈N∗

(∫
C̃j

p

)2
+

Bψ2

n2hdm
(3.110)

where Aψ2 and Bψ2 are two constants. We recall that in this section, we respectively denote
by ∥∆∥22 and ∥∆∥tt the quantities

∫⋃M

j=1 C̃j
(p− p0)2 and

∫⋃M

j=1 C̃j
|p− p0|t. We now lower bound the

term ∥∆∥22. By Hölder’s inequality:

∥∆∥22 ≥
(
∥∆∥tt∥∆∥t−2

1

) 1
t−1 ≥

(
C ′′

2 ρ∗
bulk

t
{
(2C27 + 1)∥p0∥1

}t−2
) 1
t−1

=

C ′′

2 ρ∗
bulk

t

(2C27 + 1)
(
ρ∗
tail

t

L̃
t−1
α+d

) α+d
(2−t)α+d


t−2


1
t−1

≥

C ′′

2 ρ∗
bulk

t

(2C27 + 1)
(
CtBTρ

∗
bulk

t

L̃
t−1
α+d

) α+d
(2−t)α+d


t−2


1
t−1

recalling t− 2 ≤ 0

=: C∆ρ
∗
bulk

td
(2−t)α+d L̃

2−t
(2−t)α+d ,

where C∆ is a constant can be made arbitrarily large by choosing C ′′ large enough. We therefore
have hdm∥∆∥22 ≥ cmC∆, hence combining with equation (3.110), we get

n2 ∑
j∈N∗

q2
j ≥

1
Aψ2

(
cmC∆ −Bψ2

)
≥ C29,

by choosing C ′′ large enough, which yields Pp(ψ2 = 0) ≤ η
8 .

3.E.4 Technical results

Lemma 24. The following result holds no matter whether the bulk or the tail dominates. Under
H0, the probability that at least one of the cells (C̃j)j=1,...,M contains at least two observations is
upper bounded as

Pp0 [ ∃j ∈N∗ : Nj ≥ 2 ] ≤ n2hd
∫⋃

j∈N∗ C̃j
p2

0 ≤ C24,

where C24 is a constant which can be made arbitrarily small by choosing CBT large enough.

Proof of Lemma 24. We place ourselves under H0. For all j ∈N∗, let pj =
∫
C̃j
p0. By the definition

of Nj =
∑n
i=1 1{Xi ∈ C̃j}, we have Nj ∼ Bin(pj ,n) for all j = 1, . . . ,M . Therefore the probability

that for a fixed j we have Nj ≥ 2 is upper bounded as:

1− (1− pj)n − npj(1− pj)n−1 ≤ 1− (1− npj)− npj [1− (n− 1)pj ] ≤ n2p2
j .
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The probability that at least one of the Nj is at least 2 is therefore upper bounded by ∑j∈N∗ n2p2
j .

Now, by the Cauchy-Schwarz inequality:

∑
j∈N∗

n2p2
j =

∑
j∈N∗

n2
(∫

C̃j

p0

)2

≤
∑
j∈N∗

n2hd
∫
C̃j

p2
0 = n2hd

∫⋃
j∈N∗ C̃j

p2
0.

If the tail dominates, then Lemma 9 proves that the last quantity is at most C9. Otherwise, since⋃
j∈N∗ C̃j ⊂ T (uB), the RHS can be further upper bounded by Lemma 5 as C̄n2hd

n2hd
tail

(uB)
≤ C̄(C(2)

BT )
d

by Lemma 10. In both cases, the constant upper bounding the RHS can be made arbitrarily small
by choosing C̄ large enough.

Lemma 25. If the tail dominates, i.e. if ρ∗
tail ≥ CBTρ

∗
bulk where CBT is defined in Lemma 10,

then it holds
⋃
j∈N∗ C̃j ⊂ T (2uB), provided that CBT is larger than a constant.

Proof of Lemma 25. Let y ∈ ⋃j∈N∗ C̃j and x ∈ T (uB) such that x and y belong to the same cell
C̃j . By Assumption (⋆) and Lemma 10 we have:

p0(y) ≤ (1 + c⋆)p0(x) + L(h
√
d)α ≤ (1 + c⋆)p0(x) + L

√
d
α inf
x∈B

hb(x)
α ≤ 2uB.

Lemma 26. Recall that ∥∆∥1 =
∫

T (uB) |∆| and ∥p0∥1 =
∫

T (uB) |p0|. If ∥∆∥1 ≥ 3∥p0∥1, then∣∣∣∫T (uB) ∆
∣∣∣ ≥ 1

2∥∆∥1.

Proof of Lemma 26. Define J+ = {x ∈ T : p(x) ≥ p0(x)} and J− = {x ∈ T : p(x) < p0(x)}.
Define also:

s =

∫
T ∆∫
T p0

, s+ =

∫
J+

∆∫
T p0

, s− = −
∫
J−

∆∫
T p0

Then by assumption: s+ − s− = s ≥ 3. Moreover, s− =

∫
J−

p0−p∫
T p0

≤ 1. Thus, s+ ≥ 3 ≥ 3s− so that
2(s+ − s−) ≥ s+ + s−, which yields the result.

Lemma 27. The following result holds no matter whether the bulk or the tail dominates. There
exists a constant C27 such that, whenever ∥∆∥1 ≥ C27(∥p0∥1 + 1/n), then Pp(ψ1 = 0) ≤ η

8 .

Proof of Lemma 27. Choose C27 ≥ 10 and ctail ≥ 1 so that by the triangular inequality and recalling∫
T (uB) p0 ≥ ctail

n we have: ∥p∥1 + ∥p0∥1 ≥ 5∥p0∥1, hence ∥∆∥1 ≥
∫
p−

∫
p0 ≥ 3∥p0∥1. Therefore,

the assumptions of Lemma 26 are met.

Pp(ψ1 = 0) = Pp

(∣∣∣ ∑
j∈N∗

Nj

n
− ∥p0∥1

∣∣∣ ≤ Cψ1

√
∥p0∥1
n

)
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≤ Pp

(∣∣∣ ∫⋃
j∈N∗ C̃j

p− p0
∣∣∣− ∣∣∣ ∑

j∈N∗

Nj

n
− ∥p∥1

∣∣∣ ≤ Cψ1

√
∥p0∥1
n

)
by the triangular inequality

≤ Pp

(1
2∥∆∥1 −Cψ1

√
∥p0∥1
n
≤
∣∣∣ ∑
j∈N∗

Nj

n
− ∥p∥1

∣∣∣) by Lemma 26

≤
1
n∥p∥1(

1
2∥∆∥1 −Cψ1

√
∥p0∥1
n

)2 by Chebyshev’s inequality

≤ ∥p∥1/n(
1
2∥p∥1 −

1
2∥p0∥1 −Cψ1

√
∥p0∥1
n

)2 by the triangular inequality

≤ ∥p∥1/n(
1
2∥p∥1 −

1
2∥p0∥1 −Cψ1(∥p0∥1 + 1/n)

)2 using √xy ≤ x+ y

≤ ∥p∥1/n(
1
2∥p∥1 − (Cψ1 + 1)(∥p0∥1 + 1/n)

)2 .

Choose C27 ≥ 4(Cψ1 + 1) + 1, so that the quantity 1
2∥p∥1 − (Cψ1 + 1)(∥p0∥1 + 1/n) is strictly

positive. This ensures that all of the above operations are valid. Now set z = (Cψ1 + 1)(∥p∥1 +
1/n). The function f : x 7→ x

n(x/2−z)2 is decreasing over (2z,∞). For x ≥ 20z/η, since nz > 1 and
η ≤ 1, we have:

f(x) ≤ 20z/η
n(10z/η− z)2 =

20η
nz(10− η)2 ≤

20η
81 ≤ η/4.

which proves that, whenever ∥p∥1 ≥ 20
η (Cψ1 + 1)(∥p0∥1 + 1/n), we have Pp(ψ1 = 0) ≤ η/4. This

condition is guaranteed whenever ∥∆∥1 ≥
(
1+ 20

η (Cψ1 + 1)
)
(∥p0∥1 + 1/n) = C27(∥p0∥1 + 1/n) for

C27 = 1 + 20
η (Cψ1 + 1).

Lemma 28. We have:∫⋃
j∈N∗ C̃j

(p− p0)
2 ≤ A28

hd

∑
j∈N∗

(∫
Cj

p

)2

+
B28
n2hd

+ C28Lh
α
∫⋃

j∈N∗ C̃j
|p− p0|,

where A28,B28,C28 are constants given in the proof.

Proof of Lemma 28. Let j ∈ {1, . . . ,M}. Assume that each cube C̃j is centered at xj . By Assump-
tion (⋆) we have for all j = 1, . . . ,M and x ∈ C̃j :

p(x) ≤ (1 + c⋆)p(xj) + L(h
√
d)α, (3.111)
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hence by exchanging x and xj and integrating:

p(xj) ≤
1 + c⋆
hd

∫
C̃j

p+ L(h
√
d)α, (3.112)

and by equations (3.111) and (3.112), we have:

p(x) ≤ (1 + c⋆)2

hd

∫
C̃j

p+ (2 + c⋆)L(h
√
d)α. (3.113)

Therefore, fixing any j ∈N∗ it holds:∫
C̃j

p2 ≤
∫
C̃j

p(x)dx

[
(1 + c⋆)2

hd

∫
C̃j

p+ (2 + c⋆)L(h
√
d)α

]

=
(1 + c⋆)2

hd

(∫
C̃j

p

)2

+ (2 + c⋆)L(h
√
d)α

∫
C̃j

p. (3.114)

Now, we have for all j ∈N∗:

∫
C̃j

(p− p0)
2 ≤ 2

∫
C̃j

p2 + 2
∫
C̃j

p2
0 ≤ 2 (1 + c⋆)2

hd

(∫
C̃j

p

)2

+ 2(2 + c⋆)L(h
√
d)α

∫
C̃j

p+ 2
∫
C̃j

p2
0,

and summing for j ∈N∗:

∫⋃
j∈N∗ C̃j

(p− p0)
2 ≤ A28

∑
j∈N∗

(∫
C̃j

p

)2

+C28Lh
α∥p∥1 +

C9
n2hd

.

Now,

Lhα∥p∥1 ≤ Lhα (∥∆∥1 + ∥p0∥1) ≤ Lhα∥∆∥1 +
C8
n2hd

.

Therefore, setting B28 = C8 +C9 yields the result.

Lemma 29. The following result holds no matter whether the bulk or the tail dominates. Assume
that

∑
j n

2q2
j ≥ C29 where C29 is a large constant and qj =

∫
C̃j
p for all j. Then Pp(ψ2 = 0) ≤ η

8 .

Proof. We draw k̃ ∼ Poi(k) where we recall that k = n
2 . We consider the setting where we observe

X̃1, . . . , X̃
k̃

iid drawn from the density p and define ∀j ∈ N∗,N ′
j =

∑k̃
i=1 1

X̃i=j
the histogram of

the tail in this modified setting. We recall that by the classical poissonization trick, the random
variables (N ′

j)j are independent and distributed as Poi(kqj) respectively. We first notice that

P
p⊗k̃(∀j ∈N∗ : N ′

j = 0 or 1) ≥ P
p⊗k̃(∀j ∈N∗ : N ′

j = 0 or 1|k̃ ≤ n)P(k̃ ≤ n)

≥ Pp⊗n(∀j ∈N∗ : N ′
j = 0 or 1)P(k̃ ≤ n) (3.115)

139



CHAPTER 3. GOODNESS-OF-FIT TESTING FOR HÖLDER-CONTINUOUS DENSITIES

Moreover,

P
p⊗k̃(∀j ∈N∗ : Nj = 0 or Nj = 1) =

∏
j∈N∗

e−kqj (1 + kqj
)

.

Let I− = {j ∈ N∗ : kqj ≤ 1
2} and I+ = {j ∈ N∗ : kqj > 1

2}. Recall that for x ∈ (0, 1/2], log(1 +
x) ≤ x− x2/3. Then, for j ∈ I−:

e−kqj (1 + kqj
)
= exp

{
−kqj + log(1 + kqj)

}
≤ exp

(
−
k2q2

j

3

)

Now, for j ∈ I+, we have: −kqj + log(1+ kqj) ≤ −kqj + log(1+ kqj) ≤ − 1
10kqj using the inequality

−0.9x+ log(1 + x) ≤ 0 true for all x ≥ 1
2 . Therefore, we have upper bounded the type-II error of

ψ2 by:

P
p⊗k̃(∀j ∈N∗ : Nj = 0 or Nj = 1) ≤ exp

(
− 1

3
∑
j∈I−

k2q2
j −

1
10

∑
j∈I+

kqj

)

≤ exp
(
− 1

3
∑
j∈I−

k2q2
j −

1
10
( ∑
j∈I+

k2q2
j

)1/2
)

= exp
(
− 1

3 (S − S+)−
1
10 (S+)

1/2
)

for S =
∑
j∈N∗

k2q2
j and S+ =

∑
j∈I+

k2q2
j .

Now, S+ 7→ −S
3 + 1

3S+ −
√
S+

10 is convex over [0,S] so its maximum is reached on the boundaries
of the domain and is therefore equal to (−

√
S

10 ) ∨−
S
3 = −

√
S

3 for S ≥ 9/100. Now, since ∥q∥22 ≥
4C29/k2 ≥ C29/k2, we have S = k2∥q∥22 ≥ log(16/η)2 ∨ 9/100 which ensures P

p⊗k̃(∀j ∈N∗ : Nj =

0 or Nj = 1) ≤ η/16, hence, by equation (3.115), Pp(ψ2 = 0) ≤ η
16 /P(k̃ ≤ n) ≤ η

8 if n is larger
than a constant.

3.F Lower bound in the tail regime

Recall that p(n)b = qb
∥qb∥1

where qb := p0 +
∑
j≥U

[
bjγ

(↑)
j − (1− bj)γ(↓)j

]
and that pj =

∫
C̃j
p0.

We now give the precise definitions of (γ(↑)j )j and (γ
(↓)
j )j . The perturbations (γ

(↓)
j )j are designed

to guarantee the following condition: ∀j ≥ U ,
∫
C̃j
γ
(↓)
j ≥ c pj for some small constant c > 0. To

do this, we split C̃j into smaller cells (E
(j)
l )

Mj

l=1 on which p0 can be considered as "approximately
constant", in the sense that max

E
(j)
l

p0/ max
E

(j)
l

p0 ∈ [c′, c′′] for two constants c′, c′′ > 0. By Assumption

(⋆), this condition is satisfied if all E(j)
l have edge length ≍

(
p0(x)
L

)1/α
. We now remove on each

E
(j)
l a small deterministic function ϕ

(j)
l whose total mass is at least c

∫
E

(j)
l

p0. The role of the γ(↓)j

is therefore to remove a small fraction of the mass of p0 on each cell where bj = 0. To formally
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define γ(↓)j , we first let for all j ≥ U :

uj = inf
{
u > 0 :

∫
C̃j

1p0(x)≥u p0 ≥
1
2pj

}
, (3.116)

Dj =
{
x ∈ C̃j : p0(x) ≥ uj

}
. (3.117)

We therefore apply Algorithm 3 with inputs Ω̃ = C̃j , β = α, u = uj and cβ = c′
βL for some large

constant c′
β, and we set cα = c′

β. Taking c′
β large enough ensures c⋆+

√
d
α

cα
(21−α ∨ 1) ≤ 1/2, hence,

the guarantees of Proposition 3.6 are satisfied. For each cube C̃j , Algorithm 3 defines the family of
smaller cells (E(j)

1 , . . . ,E(j)
Mj

) for some Mj ∈N. We denote the center of each cube Ejl by z(j)l ∈ C̃j

and its edge length by h(j)l ≍
(

1
L c′

β
p0(z

(j)
l )

)1/α
. Moreover, each cube has non empty intersection

with Dj and Dj ⊂
Mj⋃
l=1

E
(j)
l . For some constant c(↓) small enough, define on each cell E(j)

l :

ϕ
(j)
l (x) = c(↓)L

(
h
(j)
l

)α
f

(
x− z(j)l
h
(j)
l

)
, (3.118)

where we recall that f ≥ 0 over Rd, f ∈ H(α, 1)∩C∞, and f is supported over
{
x ∈ Rd : ∥x∥ < 1/2

}
.

We here moreover assume that f satisfies

∀x, y ∈ Rd : |f(x)− f(y)| ≤ c⋆f(x) + ∥x− y∥α. (3.119)

The perturbation γ
(↓)
j is defined as:

γ
(↓)
j =

Mj∑
l=1

ϕ
(j)
l . (3.120)

We now move to the definition of γ(↑)j . Assuming that each cube C̃j is centered at zj , γ(↑)j is defined
as:

γ
(↑)
j (x) = c

(↑)
j Lhα f

(
x− zj
h

)
, j ≥ U , (3.121)

where h := htail(uB) is defined in (3.23) and c
(↑)
j is chosen so as to ensure that πj

∫
γ
(↑)
j =

(1 − πj)
∫
γ
(↓)
j . In other words, c(↑)j is chosen so that the total mass of the prior is equal to∫

D(U) p0 in expectation over the (bj)j≥U . Noticeably, when setting c(↑) := cuc
(↓), Proposition 3.12

shows that ∀j ≥ U , c(↑)j ∈
[
c(↑), 2c(↑)

]
i.e. c(↑)j is lower- and upper bounded by two strictly positive

constants.

The functions (γ
(↓)
j )j≥U and (γ

(↑)
j )j≥U are chosen to ensure the following properties:

Proposition 3.12. 1. For all (bj)j≥U : p(n)b ∈ P(α,L′, c′
⋆) over the whole domain [0, 1]d.
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2. There exists a constant C(↓) > 0 independent of p0 such that for all j ≥ U : C(↓) ∫
C̃j
γ
(↓)
j ≥∫

C̃j
p0 where C(↓) = c(↓)(1− c⋆)∥f∥1.

For clarity, we now give the the probability density over the space Ωn of the data when they are
generated from prior (3.31). Assume that we observe (X ′′

1 , . . . ,X ′′
n) generated from p

(n)
b . Then

X ′′
1 , . . . ,X ′′

n are all iid with the same density q, which is itself (not uniformly) drawn in the set
{pb | bj ∈ {0, 1} ∀j ≥ U}. In other words, the density of (X ′′

1 , . . . ,X ′′
n) corresponds to the mixture

p(n) =
∑

bj∈{0,1}
j≥U

∏
j≥U

π
bj
j (1− πj)1−bj

(
qb
∥qb∥1

)⊗n

, (3.122)

where qb is defined in (3.30). The lower bound will be proved by showing that there exists no test
with risk ≤ η for the testing problem H ′

0 : (X ′′
1 , . . . ,X ′′

n) ∼ p⊗n
0 vs H ′

1 : (X ′′
1 , . . . ,X ′′

n) ∼ p(n). The
following Proposition states that the prior concentrates whp on a zone separated away from p0 by
an Lt distance of order ρ∗

tail.

Proposition 3.13. There exists a constant CLBtail such that, when
∫

T p0 ≥ ctail/n, we have with
probability at least 1− η

4 (over the realizations of b = (bU , . . . , bM )):

∥p(n)b − p0∥t ≥ CLBtail ρ∗
tail.

We now introduce the Bayes risk associated with the prior distribution (3.31):

Definition 3.3. Define

R tail
B = inf

ψ test

{
Pp0(ψ = 1) + Eb

[
Ppb(ψ = 0)

]}
,

where the expectation is taken with respect to the realizations of (bj)j≥U and Ppb denotes the prob-
ability distribution when the data is drawn with density (3.122).

The Proposition below states that when
∫

T (uB) p0 ≥ ctail/n and when the tail dominates, the prior
(3.31) is indistinguishable from p⊗n

0 , in the sense that there exists no test with risk ≤ η for the
testing problem H ′

0 : (X ′′
1 , . . . ,X ′′

n) ∼ p⊗n
0 vs H ′

1 : (X ′′
1 , . . . ,X ′′

n) ∼ p(n).

Proposition 3.14. R tail
B > η.

Remark: Our prior concentrates only with high probability on the zone ∥p0 − pb∥t ≥ CLBtailρ
∗
tail.

We can here justify that this is not restrictive. Indeed, we can wlog modify Proposition 3.14 to get
R tail
B > η − 2ϵ for any ϵ > 0 small enough. We moreover show in Lemma 42 that if instead of our

prior E
(
p
(n)
b

)
, we considered as prior pb,cond = E(p

(n)
b |Asep) where Asep = {b is such that ∥p0 −

pb∥t ≥ CLBtailρ
∗
tail} and where the expectation is taken according to the realizations of b, then we

would have dTV (p⊗n
0 , pb,cond) < dTV (p

⊗n
0 , Eb(p

(n)
b )) + 2ϵ ≤ 1− η − 2ϵ+ 2ϵ = 1− η. Now, pb,cond

satisfies almost surely ∥p0 − pb,cond∥t ≥ CLBtailρ∗
tail.
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3.F.1 Proof of Proposition 3.4

Proof of Proposition 3.4. Assume that
∫

T (uB) p0 < ctail
n and that n > ctail. Since

∫
T (uB) p0 ≤

ctail
n < 1, we necessarily have T (uB) ⊊ Ω. Set u = sup{v > 0 :

∫
T (v) p0 ≤ ctail

n }. We therefore
necessarily have u ≤ maxΩ p0 (since n > ctail) and

∫
T (u) p0 ≥ ctail

n . Choose D(u) ⊂ p−1
0 ({u}) a

subset such that
∫
D(u)∪T (u) p0 = ctail

n and define T ′(u) = D(u) ∪ T (u). By the definition of uaux,
we have u > uaux so that

(
max

Ω
p0

)∫
T ′(u)

p0 ≥
∫

T (u)
p2

0 ≥ cI

 Ld

n2α
(∫

T ′(u) p0
)d


1
α+d

hence max
Ω

p0 ≥ cI

 Ld

n2α
(∫
T ′(u) p0

)α


1
α+d

=
cI

c
α
α+d
tail

[
Ld

nα

] 1
α+d

=: m. (3.123)

Define hr = (nL/csmall)− 1
α+d for some small enough constant csmall and x0 = arg max

Ω
p0. We

note that m = c′
ILh

α
r where c′

I = c
α
α+d
smallcI/c

α
α+d
tail . Set B1 and B2 two disjoint balls included in

Ω ∩B
(
x0,

(
c′
Ic⋆
)1/α

hr
)

with radius R := 1
4
√
d

(
c′
Ic⋆
)1/α

hr. B1 and B2 exist no matter how close
x0 is to the boundary of Ω. Denote by x

(r)
1 and x

(r)
2 the respective centers of B1 and B2. By

Assumption (⋆), we have p0 ≥ m(1− 2c⋆) over Ω∩B
(
x0,

(
c′
Ic⋆
)1/α

hr
)

so that it is possible to set
the following prior:

pr(x) = p0(x) + crLh
α
r f

(
x
(r)
1 − x
hr

)
− crLhαr f

(
x
(r)
2 − x
hr

)
, (3.124)

where cr is a small enough constant. This prior satisfies
∫

Ω pr = 1, pr ≥ 0, pr ∈ H(α,L(1+ cr)) and
satisfies Assumption (⋆) by Lemma 22 if we choose cr small enough. Moreover, the Lt discrepancy
between p0 and pr is given by

∥p0 − pr∥tt = 2
∫

Rd

{
crLh

α
r f

(
x
(r)
1 − x
hr

)}αt
dx = 2 (crL)αt ∥f∥αtαt hαt+dr ≍ L

d(t−1)
t(α+d)n

− αt+d
t(α+d) .

Now, the total variation between pr and p0 is given by:

dTV (p0, pr) = Lhα+dr ∥f∥1 = cr∥f∥1
1
n
< 1− η,

for cr small enough, which proves the desired lower bound.

3.F.2 Proof of Proposition 3.12

Lemma 30. It holds E[∥qb∥1] = 1 and V[∥qb∥1] ≤ C30/n2, where C30 is a constant.
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Proof of Lemma 30. First, E[∥qb∥1] = 1 is true by the definition of c(↑)j and c(↓). As to the variance,
we recall that for all j ≥ U : Γ(↑)

j =
∫
C̃j
γ
(↑)
j and Γ(↓) =

∫
C̃j
γ
(↓)
j . We have:

V[∥qb∥1] =
∑
j≥U

V

(
bj(Γ

(↑)
j + Γ(↓)

j )

)
≤
∑
j≥U

πj

(
A32

1 +B32

)2

Γ(↑)
j

2
by Lemma 32

≤
(
2c(↑)

)2
(

A32
1 +B32

)2 (∑
j≥U

πj

)(
Lhα+d

)2
.

Moreover:

∑
j≥U

πj =

(
n
∑
j≥U pj

)2

2cu
≤

(
n
∫

T (uB) p0
)2

2cu
C47

2 by Lemma 47,

and
(
Lhα+d

)2
= n−4

(∫
T (uB) p0

)−2
. Hence: V[∥qb∥1] ≤ C30/n2, for some constant C30.

Lemma 31. Let I be a countable set of indices and (xl)l∈I ∈ Ω and (hl)l∈I > 0 such that the
balls (B(xl,hl))l are disjoint. Set moreover (ϵl)l∈I ∈ {±1}I and let Cα = 1 ∨ 21−α and γ(x) =∑
l∈I

ϵlal Lh
α
l f

(
x−xl
hl

)
where (al)l ≥ 0. Then ∀x, y ∈ Ω, |γ(x)− γ(y)| ≤ c⋆|γ(x)|+ ā CαL∥x− y∥α

where ā = sup
l∈I

al.

Proof of Lemma 31. Set for all l ∈ I : Al = B(xl,hl) and A0 = Ω \
(⋃

l∈I Al
)
. Let x, y ∈ Ω. The

result is direct if x, y ∈ A0. If x, y are in the same set Al where l ̸= 0 then by equation (3.119) we
have:

|γ(x)− γ(y)| = alLh
α
l

∣∣∣∣f(x− xlhl

)
− f

(
y− xl
hl

)∣∣∣∣ ≤ alLhαl [c⋆f(x− xlhl

)
+

∥∥∥∥y− xhl

∥∥∥∥α]
= c⋆γ(x) + alL∥y− x∥α.

Assume now there exist i ̸= l such that x ∈ Ai and y ∈ Al. For x′ ∈ Ai and y′ ∈ Al such that
d∥·∥(x

′,A0) = 0 and d∥·∥(y
′,A0) = 0 we have by equation (3.119):

∣∣∣γ(x)∣∣∣ = ∣∣∣γ(x)− γ(x′)
∣∣∣ ≤ c⋆∣∣∣γ(x′)

∣∣∣+ ai Lh
α
i

∥∥∥x− x′

hi

∥∥∥α = aiL∥x− x′∥α,

∣∣∣γ(y)∣∣∣ = ∣∣∣γ(y)− γ(y′)
∣∣∣ ≤ c⋆∣∣∣γ(y′)

∣∣∣+ al Lh
α
l

∥∥∥y− y′

hl

∥∥∥α = alL∥y− y′∥α.

Moreover, we have ∥x − y∥ ≥ ∥x − x′∥ + ∥y − y′∥ since x and y are in two different sets, and
Cα = max{λα+ (1− λ)α : λ ∈ [0, 1]} so that: Cα∥x− y∥α ≥ ∥x− x′∥α+ ∥y− y′∥α. This yields the
result.
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Proof of Proposition 3.12. 1. We first show that p0− γ
(↓)
j ≥ 0 for all j ∈N∗. By Lemma 44, we

have pU ≤ C44Lhα+d where C44 is a constant, so that by Assumption (⋆):

∀j ≥ U , ∀x ∈ C̃j , p0(x) ≤
(
C44(1 + c⋆) +

√
d
α)
Lhα =: CLhα. (3.125)

Recall that e(C̃j) = htail. Therefore, the condition that Algorithm 3 splits C̃j at least once
rewrites:

e(C̃j) = htail >

p0(xj)

c′
βL

1/α

⇐= htail >

C
c′
β

1/α

htail

by equation (3.125), which is true if we choose c′
β large enough. This ensures that for all cell

E
(j)
l and for all x ∈ E(j)

l , we have by the properties of the partitioning scheme (Proposition
3.6 item 3), that p0(x) ≥ 1

2p0
(
z
(j)
l

)
≥ L(h(j)l )α by taking cβ = cα ≥ 2. Therefore,

p0 − ϕ
(j)
l ≥ p0 − c(↓)L

(
h
(j)
l

)α
≥ 1

2p0
(
z
(j)
l

)
− c(↓)L

(
h
(j)
l

)α
≥ 1 − c(↓)

2 p0
(
z
(j)
l

)
≥ 0.

Moreover, it is clear that C̃j , p0 − γ
(↓)
j ∈ H(α,L(1 + c(↓))) ⊂ H(α,L′) and C̃j , p0 + γ

(↑)
j ∈

H(α,L(1+ c
(↑)
j )) ⊂ H(α,L′) for c(↓) small enough. To finish, by Lemma 31, we have that for

all (bj)j≥U , p(n)b satisfies Assumption (⋆) with the constants c′
⋆ and L′ by choosing c(↓) small

enough. Indeed, set γ =
∑
l≥U

bjγ
(↑)
j − (1− bj)γ(↓)j and ā = sup

(
{c(↓)} ∪ {c(↑)j : j ≥ U}

)
.

|qb(x)− qb(y)| ≤ |p0(x)− p0(y)|+ |γ(x)− γ(y)|
≤ c⋆p0(x) + c⋆|γ(x)|+ (1 + ā Cα)L∥x− y∥α.

Let j ≥ U such that x ∈ C̃j . If bj = 1 then γ(x) = γ
(↑)
j (x) ≥ 0 hence p0(x) + |γ(x)| =

p0(x) + γ(x) which proves that (⋆) is satisfied. Otherwise, γ(x) = −γ(↓)(x). We have
already shown that γ(↓)j ≤ p0 over C̃j . Taking c(↓) small enough, we can therefore impose, for
any λ > 0 : γ(↓)j ≤ λp0 over C̃j . Therefore,

p0(x) + |γ(x)| = p0(x) + γ
(↓)
j (x) ≤ 1 + λ

1− λ
(
p0(x)− γ

(↓)
j (x)

)
.

Taking λ and ā small enough (which can be done by taking c(↓) small enough), we get in both
cases that qb satisfies Assumption (⋆) with the constants c⋆(1+ δ/2) and L(1+ δ/2) instead
of c⋆ and L. Now, by Lemma 30 and the Chebyshev inequality, the event

{∣∣ ∥qb∥1 − 1
∣∣ ≤ C32

}
can have arbitrarily high probability when n is larger than a suitably chosen constant. Taking
n large enough ensures that with probability arbitrarily close to 1, p(n)b satisfies (⋆) with the
constants c′

⋆ and L′.
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2. By Proposition 3.6, we have h(j)l ≥ 1
2β+1

(
1

L c′
β
p0(z

(j)
l )

)1/α
and that for all l ∈ {1, . . . ,Mj} :

p0 ≥ 1
2 p0(z

(j)
l ) over E(j)

l . Now, for all j ≥ U and l ∈ {1, . . . ,Mj} we have

∫
C̃j

γ
(↓)
j =

Mj∑
j=1

∫
E

(j)
l

ϕ
(j)
l =

Mj∑
j=1

c(↓)L
(
h
(j)
l

)α+d
∥f∥1

≥ c(↓)∥f∥1
Mj∑
j=1

L
1

2β+1
1

L c′
β

p0(z
(j)
l )

(
h
(j)
l

)d
≥ c(↓)∥f∥1

1
2β+2c′

β

∫
Dj

p0 ≥
1

C(↓)

∫
Dj

p0,

where C(↓) is a constant, which ends the proof.

3.F.3 Proof of Proposition 3.13

In what follows we set for all j ≥ U :

Γ(↑)
j =

∫
C̃j

γ
(↑)
j and Γ(↓) =

∫
C̃j

γ
(↓)
j . (3.126)

Lemma 32. There exist three constants A32,B32 and C32 such that for all j ≥ U , it holds:

1. Γ(↓)
j ≤ A32 pj,

2. Γ(↑)
j ≥ B32 pj

3. ∥γ(↑)j ∥tt ≥ C32
∫
C̃j
pt0 where C32 < 1.

Proof of Lemma 32. Fix j ≥ U .

1. We have:
∫
C̃j

γ
(↓)
j =

Mj∑
l=1

c(↓)Lh
(j)
l

α+d
∥f∥1 ≤ ∥f∥1

Mj∑
l=1

c(↓)

c′
β

p0
(
z
(j)
l

)
h
(j)
l

d

≤ 2∥f∥1
c(↓)

c′
β

Mj∑
l=1

∫
E

(j)
l

p0 ≤ 2∥f∥1
c(↓)

c′
β

pj =: A32 pj .

2. By definition of U :

pj ≤
cu

n2∑
j≥U pj

≤ cu
n2D

∫
T (uB) p0

=
cu
D
Lhα+d (3.127)

≤ 1
B32

Γ(↑)
j , for some constant B32.
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3. Let x ∈ C̃j and y ∈ C̃j such that p0(y) =
pj
hd

, which exists by the intermediate value theorem.
We have by Assumption (⋆):

p0(x) ≤ (1 + c⋆)p0(y) + L(h
√
d)α

≤
[
(1 + c⋆)

cu
D

+
√
d
α
]
Lhα by Equation (3.127),

so that:∫
C̃j

pt0 ≤
[
(1 + c⋆)

cu
D

+
√
d
α
]t
Lthαt+d ≤ 1

C32
∥γ(↑)j ∥

t
t , for some constant C32.

Proof of Proposition 3.13. Assume throughout the proof that
∫

Bc p0 > ctail
n . We show that our

prior concentrates with high probability on a zone separated away from p0 by an Lt distance of
order ρ∗

tail, up to a constant. To lower bound the Lt separation between our prior and the null
distribution, we will only consider the discrepancy accounted for by the perturbations (γ

(↑)
j )j . We

recall that C̃0 = D(U)c. For all j ≥ U , fix bj ∈ {0, 1} as well as n large enough, such that∣∣ ∥qb∥1 − 1
∣∣ ≤ C32. (3.128)

By Lemma 30 and the Chebyshev inequality, the event corresponding to Equation (3.128) can
have arbitrarily high probability when n is larger than a suitably chosen constant. Now, write
I0 = {0} ∪ {j ∈N∗ : j ≥ U}.

∥p0 − pb∥tt =
∑
j∈I0

bj

∫
C̃j

∣∣∣∣p0 −
p0 + γ

(↑)
j

∥qb∥1

∣∣∣∣t + ∑
j∈I0

(1− bj)
∫
C̃j

∣∣∣∣p0 −
p0 + γ(↓)

∥qb∥1

∣∣∣∣t

≥
∑
j∈I0

bj

∫
C̃j

∣∣∣∣p0 −
p0 + γ

(↑)
j

∥qb∥1

∣∣∣∣t = ∑
j∈I0

bj

∥∥∥∥p0 −
p0 + γ

(↑)
j

∥qb∥1

∥∥∥∥t
t,C̃j

≥
∑
j∈I0

bj

∣∣∣∣∣∣∣
∥γ(↑)j ∥t,C̃j
∥qb∥1

−
∥∥∥∥p0

(
1− 1
∥qb∥1

)∥∥∥∥
t,C̃j

∣∣∣∣∣∣∣
t

by the reverse triangle inequality

≥
∑
j∈I0

bj

∥γ(↑)j ∥t,C̃j
∥qb∥1

−
(

1− 1
∥qb∥1

) 1
C32
∥γ(↑)j ∥t,C̃j


t

by Lemma 32 and Equation (3.128)

=
∑
j∈I0

bj∥γ
(↑)
j ∥

t
t,C̃j

(
1
∥qb∥1

(
1 + 1

C32

)
− 1
C32

)t

≥
∑
j∈I0

bj∥γ
(↑)
j ∥

t
t,C̃j

( 1
2 +C32

)t
by Equation (3.128)
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≥
∑
j≥U

bjcuc
(↓)Lthαt+d

( 1
2 +C32

)t
:= CgapL

thαt+d
∑
j≥U

bj .

It now remains to prove that, whp, Lthαt+d ∑
j≥U

bj ≳ ρ∗
tail

t.

E

[ ∑
j≥U

bj

]
=
∑
j≥U

πj =

n2
( ∑
j≥U

pj

)2

2cu
≥ D2c2

tail

2cu
by Lemma 46.

Moreover,

V

[ ∑
j≥U

bj

]
≤
∑
j≥U

πj = E

[ ∑
j≥U

bj

]

We now consider the event ∑
j≥U

bj ≥
1
2E

[ ∑
j≥U

bj

]
. (3.129)

By the Chebyshev inequality, the probability of this event can be made arbitrarily large by choosing
the constant ctail small enough, since V

[ ∑
j≥U

bj

]
= o

(
E2
[ ∑
j≥U

bj

])
as ctail → +∞. Therefore, on

the intersection of the events defined in Equations (3.128) and (3.129), we have that:

∥p0 − pb∥tt ≥ CgapL
thαt+d

∑
j≥U

bj ≥
Cgap

2 Lthαt+d
∑
j≥U

πj

≥ Cgap
2 Lthαt+dD

∫
T (uB)

p0 by Lemma 46

≍ ρ∗
tail

t.

3.F.4 Proof of Proposition 3.14

Proof of Proposition 3.14. We draw ñ ∼ Poi(2n) and ñ′|b ∼ Poi
(
2n
∫

Ω qb
)

independent of ñ, and
we let A1 = {ñ ≥ n} and A′

1 = {ñ′ ≥ n}. By Lemma 39, we can ensure P(A1), P(A′
1) ≥

1− η/100 for n larger than a constant. This condition will be assumed throughout the proof of
Proposition 3.14. We will also slightly abuse notation and identify the probability densities with
their associated probability measures. Moreover, we will use the notation C̃0 = D(U)c where we
recall that D(U ) =

⋃
j≥U

C̃j . We recall the definition of p̄(n) in (3.122) and introduce the poissonized

probability measures p̄(ñ
′)

b , q(ñ)b and p⊗ñ
0 , defined over X̃ =

⋃
n∈N

Ωn. The core of the proof is to

link our target quantity dTV (p̄(n), p⊗n
0 ) = dTV (Pp⊗n

0
, Pp̄(n)) (which we want to upper bound by a

small constant), to the quantity dTV (q
(ñ)
b , p⊗ñ

0 ) which is easier to work with. For clarity, we give
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the densities associated to each of the poissonized probability measures. For any x ∈ X̃ , we denote
by ñ(x) ∈N the unique integer such that x = (x1, . . . ,xñ(x)).

p⊗ñ
0 (x)

∣∣∣{ñ = ν} =

 if ñ(x) ̸= ν : 0
otherwise: p⊗ν

0 (x).

p̄
(ñ′)
b (x)

∣∣∣{ñ′ = ν} =


if ñ′(x) ̸= ν : 0

otherwise: ∑
(βj)j≥U∈{0,1}

∏
j≥U

π
βj
j (1− πj)1−βj

(
qβ

∥qβ∥1

)⊗ν
(x).

q
(ñ)
b (x)

∣∣∣{ñ = ν} =


if ñ(x) ̸= ν : 0
otherwise: ∑

(βj)j≥U∈{0,1}

∏
j≥U

π
βj
j (1− πj)1−βj q⊗ν

β (x).

Note that qb is not a density. Therefore the term q
(ñ)
b with ñ ∼ Poi(2n) denotes the mixture of

inhomogeneous spatial Poisson processes with intensity functions (2n qb)b, over the realizations of
(bj)j∈I0 where we recall that I0 = {0} ∪ {j ∈ N∗ : j ≥ U}. We define the histogram of x over the
domain D(U) by setting for all j ≥ U : Ñj(x) =

∑ñ(x)
i=1 1

xi∈C̃j
.

We have R tail
B = 1− dTV (Pp0 , Pp̄), where Pp0 and Pp̄ are respectively the probability measures of

the densities p⊗n
0 and p̄. We therefore aim at proving dTV (Pp0 , Pp̄) < 1− η. We will denote by

Poi(f) the inhomogeneous spatial Poisson process with nonnegative intensity function f , by f|C̃j
the restriction of f to the cell C̃j . Moreover, for any two probability measures P ,Q over the same
measurable space (Y, C), and for any event A0 ∈ C we will denote by dA0

TV (P ,Q) the total variation
restricted to A0, defined as the quantity:

d
(A0)
TV (P ,Q) = sup

A∈C

∣∣∣P (A∩A0)−Q(A∩A0)
∣∣∣. (3.130)

We prove the following lemmas concerning the total variation restricted to A0:

Lemma 33. For any two probability measures P ,Q over the same measurable space (Y, C), and
for any event A0 ∈ C, if P ,Q≪ µ over (Y, C), i.e. dP = pdµ and dQ = qdµ, it holds:

d
(A0)
TV (P ,Q) = 1

2

[
|P (A0)−Q(A0)|+

∫
A0
|p− q|dµ

]
.

Lemma 34. For any two probability measures P1,Q1 (resp. P2,Q2) over the same measurable
space (Y1, C1)(resp. (Y2, C2)), for any event A0 = A

(1)
0 ×A

(2)
0 such that A(1)

0 ∈ C1 and A(2)
0 ∈ C2, if

P1,Q1 ≪ µ1 (resp. P2,Q2 ≪ µ2) over (Y1, C1) (resp. (Y2, C2)), i.e. dPj = pjdµj and dQj = qjdµj
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for j = 1, 2, then it holds:

d
(A0)
TV (P1 ⊗ P2,Q1 ⊗Q2) ≤ d

(A
(1)
0 )

TV (P1,Q1) + d
(A

(2)
0 )

TV (P2,Q2).

We now come back to the proof of Proposition 3.14. We define ∀j ≥ U :

A(j) =
{
x ∈ X̃

∣∣∣ Ñj(x) ≤ 1
}

, (3.131)

A(0) = X̃ . (3.132)

We also introduce
A =

{
x ∈ X̃

∣∣∣ ∀j ≥ U : Ñj ≤ 1
}
=
⋂
j≥U
A(j), (3.133)

the subset of X̃ of all the vectors of observations such that any cube (C̃j)j≥U contains at most one
observation. A will play an essential role, as it is the high probability event on which we will place
ourselves to approximate the total variation dTV (p

⊗n
0 , p̄(n)).

In Lemmas 35-41, we will successively use equivalence of models to formalize the following (informal)
chain of approximations:

dTV (Pp0 , Pp̄) ≲ dTV (p̄
(ñ′), p⊗ñ

0 ) = dTV (q
(ñ)
b , p⊗ñ

0 ) ≲ d
(A)
TV

(
q
(ñ)
b , p⊗ñ

0

)
= d

(A)
TV

⊗
j∈I0

Poi
(
2n p0|C̃j

)
,
⊗
j∈I0

Poi
(
2n q

bj |C̃j

)
≤
∑
j≥U

d
(A(j))
TV

{
Poi
(

2n q
b|C̃j

)
, Poi

(
2n p0|C̃j

)}
,

At each step, we will control the approximation errors. We recall that Pp⊗n
0

and Pp̄(n) are defined

over Ωn whereas p⊗ñ
0 , p̄(ñ

′)
b and q

(ñ)
b are defined on X̃ =

⋃
n∈N

Ωn. More precisely we will prove the

following lemmas:

Lemma 35. It holds dTV (p̄(n), p⊗n
0 ) ≤ dTV (p̄(ñ

′), p⊗ñ
0 )/P(A1 ∩A′

1).

Note that in the right hand side of Lemma 35, we have ñ′ observations for p̄(ñ′) and ñ for p⊗ñ
0 .

Lemma 36. It holds p(ñ′) = q
(ñ)
b .

Lemma 37. It holds: dTV (q
(ñ)
b , p⊗ñ

0 ) ≤ d(A)
TV

(
q
(ñ)
b , p⊗ñ

0

)
+ q

(ñ)
b (Ac) + p⊗ñ

0 (Ac).

Lemma 38. The following tensorization of the spatial Poisson processes holds:

Poi(2np0) =
⊗
j∈I0

Poi(2np0|C̃j
) and Poi(2nqb) =

⊗
j∈I0

Poi(2nq
bj |C̃j

). Hence we have:

d
(A)
TV

(
q
(ñ)
b , p⊗ñ

0

)
≤
∑
j≥U

d
(A(j))
TV

(
Poi

(
2n q

b|C̃j

)
, Poi

(
2n p0|C̃j

))
.
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Furthermore, we will prove the following lemmas controlling the error at each step:

Lemma 39. There exists a constant n0 ∈N such that whenever n ≥ n0, it holds
P(A1), P(A′

1) ≥ 1− η/100.

Lemma 40. It holds p⊗n
0 (Ac) ≤ A40 and q

(n)
b (Ac) ≤ B40 where A40 and B40 are two constants

which can be made arbitrarily small by choosing successively cI , cu and c(↓) small enough.

Finally we compute each of the terms in the last sum from Lemma 38:

Lemma 41. For all j ≥ U it holds d(A
(j))

TV

(
Poi

(
2n q

b|C̃j

)
, Poi

(
2n p0|C̃j

))
≤ A41n2p2

j +B41
pj∑

l≥U
pl

where A41 and B41 are two constants and B41 can be made arbitrarily small by choosing cu small
enough.

Bringing together Lemmas 35 - 41, we get:

dTV (p̄
(n), p⊗n

0 ) ≤
[
A40 +B40 +A41

∑
j≥U

n2p2
j +B41

]
/P(A1 ∩A′

1)

≤
[
A40 +B40 +A41cu +B41

]
/P(A1 ∩A′

1),

where the right-hand side can be made arbitrarily small by choosing successively cI , cu and c(↓)

small enough, which ends the proof of Proposition 3.14.

We now prove Lemmas 33 - 41.

Proof of Lemma 33. Suppose by symmetry P (A0) ≥ Q(A0) and set B0 = {x ∈ Y : p(x) ≥ q(x)}.
Then we have:

|P (B0 ∩A0)−Q(B0 ∩A0)| = P (B0 ∩A0)−Q(B0 ∩A0) =
∫
B0∩A0

|p− q|dµ

= P (A0)−Q(A0) +
∫
A0\B0

|p− q|dµ,

so that |P (B0 ∩A0)−Q(B0 ∩A0)| =
1
2

[
|P (A0)−Q(A0)|+

∫
A0
|p− q|dµ

]
,

which yields: d
(A0)
TV (P ,Q) ≥ 1

2

[
|P (A0)−Q(A0)|+

∫
A0
|p− q|dµ

]
.

Moreover, for any B ∈ C, we consider |P (B ∩A0)−Q(B ∩A0)|. There are two cases.
First case: P (B ∩A0) ≥ Q(B ∩A0). Then we have:

|P (B ∩A0)−Q(B ∩A0)| = P (B ∩A0)−Q(B ∩A0)

= P (B ∩A0 ∩B0)−Q(B ∩A0 ∩B0) + P (B ∩A0 \B0)−Q(B ∩A0 \B0)︸ ︷︷ ︸
≤0
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≤ P (B ∩A0 ∩B0)−Q(B ∩A0 ∩B0) ≤ P (A0 ∩B0)−Q(A0 ∩B0)

= |P (A0 ∩B0)−Q(A0 ∩B0)|.

Second case: Q(B ∩A0) ≥ P (B ∩A0). Then we have:

|P (B ∩A0)−Q(B ∩A0)| = Q(B ∩A0)− P (B ∩A0)|
= Q(B ∩A0 \B0)− P (B ∩A0 \B0) +Q(B ∩A0 ∩B0)− P (B ∩A0 ∩B0)︸ ︷︷ ︸

≤0

≤ Q(B ∩A0 \B0)− P (B ∩A0 \B0) ≤ Q(A0 \B0)− P (A0 \B0)

= Q(A0)− P (A0)︸ ︷︷ ︸
≤0

+P (A0 ∩B0)−Q(A0 ∩B0)

≤ |P (A0 ∩B0)−Q(A0 ∩B0)|.

In both cases, the result is proven.

Proof of Lemma 34. We have by Lemma 33:

2d(A0)
TV (P1 ⊗ P2,Q1 ⊗Q2) = |P1 ⊗ P2(A0)−Q1 ⊗Q2(A0)|+

∫
A0
|p1(x)p2(y)− q1(x)q2(y)|dµ1(x)dµ2(y)

≤ P1(A
(1)
0 )

∣∣∣P2(A
(2)
0 )−Q2(A

(2)
0 )

∣∣∣+Q2(A
(2)
0 )

∣∣∣P1(A
(1)
0 )−Q1(A

(1)
0 )

∣∣∣
+ P1(A

(1)
0 )

∫
A

(2)
0

|p2(y)− q2(y)|dµ2(y)

+Q2(A
(2)
0 )

∫
A

(1)
0

|p1(x)− q1(x)|dµ1(x)

= 2P1(A
(1)
0 )d

(A
(2)
0 )

TV (P2,Q2) + 2Q2(A
(2)
0 )d

(A
(1)
0 )

TV (P1,Q1)

≤ 2d(A
(1)
0 )

TV (P1,Q1) + 2d(A
(2)
0 )

TV (P2,Q2).

Proof of Lemma 35. We have:

dTV
(
p̄
(ñ′)
b , p⊗ñ

0

)
= sup

A∈X̃

∣∣∣p̄(ñ′)
b (A)− p⊗ñ

0 (A)
∣∣∣ ≥ sup

A∈X̃ ∩A1∩A′
1

∣∣∣p̄(ñ′)
b (A)− p⊗ñ

0 (A)
∣∣∣

= P(A1 ∩A′
1) sup

A∈X̃

∣∣∣p̄(ñ′)
b,A′

1
(A)− p⊗ñ

0,A1
(A)

∣∣∣ where


p̄
(ñ′)
b,A′

1
= p̄

(ñ′)
b (·|A′

1)

p⊗ñ
0,A1

= p⊗ñ
0 (·|A1)

= P(A1 ∩A′
1) dTV

(
p̄
(ñ′)
b,A′

1
, p⊗ñ

0,A1

)
.

Furthermore, over A1 ∩A′
1 it holds ñ ≥ n and ñ′ ≥ n, so that dTV

(
p̄
(ñ)
b,A1

, p⊗ñ
0,A1

)
≥ dTV

(
p̄
(n)
b , p⊗n

0

)
,

which yields the result.
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Proof of Lemma 36. For fixed b = (bj)j≥U we have ñ′ ∼ Poi(∥qb∥1) and p(ñ
′)

b = Poi
(
n∥qb∥1 qb

∥qb∥1

)
=

Poi(nqb) = q⊗ñ
b so that taking the mixture over all realizations of b yields that, unconditionally on

b: p(ñ
′)

b = q
(ñ)
b .

Proof of Lemma 37. We have:

dTV
(
q
(ñ)
b , p⊗ñ

0

)
≤ sup

A∈X̃∩A

∣∣∣q(ñ)b (A)− p⊗ñ
0 (A)

∣∣∣+ q
(ñ)
b (Ac) + p⊗ñ

0 (Ac)

= d
(A)
TV

(
q
(ñ)
b , p⊗ñ

0

)
+ q

(ñ)
b (Ac) + p⊗ñ

0 (Ac).

Hence the result.

Proof of Lemma 38. To further transform the last quantity d
(A)
TV

(
q
(ñ)
b , p⊗ñ

0

)
from Lemma 37, we

recall that drawing an inhomogeneous spatial Poisson process with intensity function f , defined on⋃
j∈I0 C̃j , is equivalent to drawing independently for each cell C̃j , j ∈ I0, one inhomogeneous spatial

Poisson process with intensity f|C̃j
. For any non-negative function g, denote by Poi(g) the spatial

Poisson process with intensity function g. We can therefore re-index the data generated from p⊗ñ
0 =

Poi(np0), as data generated by ⊗
j∈I0 Poi

(
np0|C̃j

)
- and respectively q

(ñ)
b as ⊗j∈I0 Poi

(
nq

b|C̃j

)
.

Moreover, by independence of (bj)j∈I0 , the events (A(j))j∈I0 defined in (3.131) and (3.132) are
independent under both Poi(2np0) and Poi(2nqb) so that Lemma 34 yields:

d
(A)
TV

(
q
(ñ)
b , p⊗ñ

0

)
≤
∑
j∈I0

d
(A(j))
TV

(
Poi
(
2n q

b|C̃j

)
, Poi

(
2n p0|C̃j

))

=
∑
j≥U

d
(A(j))
TV

(
Poi
(
2n q

b|C̃j

)
, Poi

(
2n p0|C̃j

))
since on C̃0 : p0 = qb for all b.

Proof of Lemma 39. By Chebyshev’s inequality:

P(Ac1) = P(Poi(2n) < n) ≤ P(|Poi(2n)− 2n| > n) ≤ 2n
n2 =

2
n

Moreover,

P(A′
1
c
) = P(Poi(2n∥qb∥1) < n) ≤ P

(
Poi(2n∥qb∥1) < n

∣∣∣∣ ∥qb∥1 ≥ 2
3

)
+ P

(
∥qb∥1 <

2
3

)

≤ P

(
Poi
(4

3n
)
< n

)
+ P

(∣∣∣∥qb∥1 − 1
∣∣∣ > 1

3

)
≤ 12

n
+

9C30
n2 by Lemma 30.

Choosing n0 such that 12
n0

+ 9C30
n2

0
≤ η/100, we get the result.
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Proof of Lemma 40. • For the first quantity:

p⊗n
0 (Ac) ≤ 1

P(A1)
Eñ

[
P
p⊗ñ

0

(
∃j ≥ U : Ñj ≥ 2 | ñ

) ∣∣∣∣ ñ ≥ n
]

≤ 1
P(A1)

Eñ

∑
j≥U

ñ2p2
j

∣∣∣∣ ñ ≥ n
 =

2n2

P(A1)

∑
j≥U

p2
j

≤ 2n2

P(A1)

∑
j≥U

hd
∫
C̃j

p2
0 ≤ 3C48,

by the Cauchy-Schwarz inequality and Lemma 48, and taking n ≥ n0. Setting A40 = 3C48
yields the result.

• For the second quantity:

q
(ñ)
b (Ac) = Eb,ñ

[
P
q
(̃n)
b

(
∃j ≥ U : Ñj ≥ 2 | ñ

)]

≤
∑
j≥U

Ebj ,ñ

P
q
(̃n)

bj |C̃j

(
Ñj ≥ 2 | ñ

) ≤ ∑
j≥U

Ebj ,ñ

ñ2
(∫

C̃j

qb

)2


= 2n2
[
V [∥qb∥1] +

∑
j≥U

p2
j

]
≤ 2C30 + 2C48 =: B40.

Setting B40 := 2C30 + 2C48 yields the result.

Proof of Lemma 41. We will use the notation

p
(↑)
j = pj + Γ(↑)

j , (3.134)

p
(↓)
j = pj − Γ(↓)

j . (3.135)

First, we show the following two facts:

Fact 1: For all a, b ≥ 0 such that a+ b = 1, and for all x, y, z ∈ R+ such that x = ay+ bz, it holds
∣∣∣e−x − ae−y − be−z

∣∣∣ ≤ x2

2 + a
y2

2 + b
z2

2 .

The proof of Fact 1 is straightforward by the relation 1− u ≤ e−u ≤ 1− u+ u2

2 for all u ≥ 0.

Fact 2: We have P
p⊗ñ

0

(
Ñj = 1

)
= 2npje−2npj and moreover it holds:

0 ≤ P
q
(̃n)
b

(
Ñj = 1

)
− 2npje−2npj ≤ Cqn2p2

j ,
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where Cq is a constant.

We now prove Fact 2. Under p⊗ñ
0 we have that the number of observations is distributed as

ñ ∼ Poi(2n) so that Ñj ∼ Poi(2n pj), hence P
p⊗ñ

0

(
Ñj = 1

)
= 2npje−2npj .

Now, under q(ñ)b , it holds: Ñj ∼ πjPoi
(
2np(↑)j

)
+ (1− πj)Poi

(
2np(↓)j

)
. Therefore,

P
q
(̃n)
b

(
Ñj = 1

)
= πj2np(↑)j e−2np(↑)j + (1− πj)2np(↓)j e−2np(↓)j (3.136)

= e−2npj
[
πj2np(↑)j e−2nΓ(↑)

j + (1− πj)2np(↓)j e2nΓ(↓)
j

]
, (3.137)

hence P
q
(̃n)
b

(
Ñj = 1

)
≥ 2npje−2npj using the inequality ex ≥ 1+x. We now prove P

q
(̃n)
b

(
Ñj = 1

)
≤

2npje−2npj + 8n2p2
j . First, we have 2nΓ(↑)

j ≤ 1 since 2nΓ(↑)
j = 2n ∥f∥1c

(↑)
j

n2
∫

T (uB )
p0
≤ 2∥f∥1cuc(↓)

ctail
≤ 1 by

choosing ctail large enough. Therefore, using the inequality ex ≤ 1+ 2x for 0 ≤ x ≤ 1, we get from
Equation (3.137):

P
q
(̃n)
b

(
Ñj = 1

)
≤ e−2npj

(
πj2np(↑)j + (1− πj)2np(↓)j

(
1 + 4nΓ(↓)

j

))
≤ 2npje−2npj + 8n2pjΓ

(↓)
j ≤ 2npje−2npj + 8n2p2

j

=: 2npje−2npj + 8n2pjΓ
(↓)
j ≤ 2npje−2npj + 8n2p2

j ,

which ends the proof of Fact 2.

Facts 1 and 2 being established, we can now compute d(A
(j))

TV

(
Poi
(
2n q

b|C̃j

)
, Poi

(
2n p0|C̃j

))
for

fixed j ≥ U . By Lemma 33 we have:

d
(A(j))
TV

(
Poi
(
2n q

b|C̃j

)
, Poi

(
2n p0|C̃j

))
≤ 1

2

[
Poi
(
2n q

b|C̃j

)
(A(j)c) + Poi

(
2n p0|C̃j

)
(A(j)c) +

∫
A(j)

∣∣∣p⊗ñ
0|C̃j
− q(ñ)

b|C̃j

∣∣∣] (3.138)

We now compute the term
∫

A(j)

∣∣∣p⊗ñ
0|C̃j
− q(ñ)

b|C̃j

∣∣∣.
∫

A(j)

∣∣∣p⊗ñ
0|C̃j
− q(ñ)

b|C̃j

∣∣∣ = ∫
{Ñj=0}

∣∣∣p⊗ñ
0|C̃j
− q(ñ)

b|C̃j

∣∣∣︸ ︷︷ ︸
Term 1

+
∫

{Ñj=1}

∣∣∣p⊗ñ
0|C̃j
− q(ñ)

b|C̃j

∣∣∣︸ ︷︷ ︸
Term 2

. (3.139)

Term 1 =
∣∣∣Poi

(
2n p0|C̃j

)
(Ñj = 0)−Poi

(
2n q

b|C̃j

)
(Ñj = 0)

∣∣∣
=
∣∣∣e−2npj − πje−2np(↑)j − (1− πj)e−2np(↓)j

∣∣∣
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≤ 2n2p2
j + πj2n2p

(↑)
j

2
+ (1− πj)2n2p

(↓)
j

2
using Fact 1

≤ 4n2p2
j + πj2n2p

(↑)
j

2
.

Moreover:

πj2n2p
(↑)
j

2
=

[ 1
2cu

pjn
2 ∑
l≥U

pl

]
2n2

pj + c
(↑)
j ∥f∥1

n2 ∫
T (uB) p0


2

≤
[ 1

2cu
pj n

2 ∑
l≥U

pl

]
2n2

 1
n2 ∑

l≥U
pl

2 [
cu + c

(↑)
j ∥f∥1C47

]2
by Lemma 47

≤ pj∑
l≥U

pl
cu
[
1 + 2c(↓)∥f∥1C47

]2
=: C(↑)

π

pj∑
l≥U

pl
, (3.140)

where C(↑)
π can be made arbitrarily small by choosing cu small enough. It follows that

Term 1 ≤ 4n2p2
j +C(↑)

π

pj∑
l≥U

pl
. (3.141)

We now consider Term 2. We set p(↑)(x) = p0(x) + γ
(↑)
j (x) and p(↓)(x) = p0(x)− γ

(↓)
j (x).

Term 2 =
∫

{Ñj=1}

∣∣∣p⊗ñ
0|C̃j
− q(ñ)

b|C̃j

∣∣∣ = ∫
C̃j

∣∣∣p0(x)P
p⊗ñ

0

(
Ñj = 1

)
− qb(x)P

q
(̃n)
b

(
Ñj = 1

) ∣∣∣dx
=
∫
C̃j

∣∣∣p0(x)P
p⊗ñ

0

(
Ñj = 1

)
−
(
πjp

(↑)(x) + (1− πj)p(↓)(x)
)

P
q
(̃n)
b

(
Ñj = 1

) ∣∣∣dx
≤ pj

∣∣∣∣∣Pp⊗ñ
0

(
Ñj = 1

)
−P

q
(̃n)
b

(
Ñj = 1

)∣∣∣∣∣
+ P

q
(̃n)
b

(
Ñj = 1

) ∫
C̃j

∣∣∣ (πjγ(↑)j (x)− (1− πj)γ(↓)j (x)

) ∣∣∣dx
≤Cqn2p3

j + P
q
(̃n)
b

(
Ñj = 1

)
2Γ(↓)

j by Fact 2 and recalling πjΓ(↑)
j = (1− πj)Γ(↓)

j

≤ Cqn
2p3
j +

(
2npj +Cqn

2p2
j

)
2pj by Fact 2 and recalling Γ(↓)

j ≤ pj

≤ (3Cq + 4)n2p2
j . (3.142)

We now control the term Poi
(
2n q

b|C̃j

)
(A(j)c) + Poi

(
2n p0|C̃j

)
(A(j)c) from equation (3.138). We

have:

Poi
(
2n p0|C̃j

)
(A(j)c) = P(Poi(2npj) ≥ 2) = 1− e−2npj (1 + 2npj)

≤ 1− (1− 2npj)(1 + 2npj) = 4n2p2
j . (3.143)
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Moreover we have: Poi
(
2n q

b|C̃j

)
(A(j)c) = P

(
Poi(2n

∫
C̃j

qb) ≥ 2
)

= πjP(Poi(2np(↑)j ) ≥ 2) + (1− πj)P(Poi(2np(↓)j ) ≥ 2)

≤ 4πjn2p
(↑)
j

2
+ (1− πj)4n2p

(↓)
j

2
by (3.143)

≤ 2C(↑)
π

pj∑
l≥U

pl
+ 4n2p2

j by (3.140). (3.144)

Bringing together equations (3.138), (3.139), (3.141), (3.142), (3.143) and (3.144), we get:

d
(A(j))
TV

(
Poi
(
2n q

b|C̃j

)
, Poi

(
2n p0|C̃j

))
≤

1
2

4n2p2
j + 2C(↑)

π

pj∑
l≥U

pl
+ 4n2p2

j + 4n2p2
j + 2C(↑)

π

pj∑
l≥U

pl
+ (3Cq + 4)n2p2

j


= (8 + 3

2Cq)n
2p2
j +

3
2C

(↑)
π

pj∑
l≥U

pl

=: A41 n
2p2
j +B41

pj∑
l≥U

pl
.

which ends the proof of Proposition 3.14.

Lemma 42. Denote by Pb the probability distribution over the realizations of the random variable b.
Set Asep = {b is such that ∥p0− pb∥t ≥ CLBtailρ∗

tail} and pb,cond = E(p
(n)
b |Asep) where the expectation

is taken according to the realizations of b. Suppose Pb(Acsep) ≤ ϵ. Then dTV (p
⊗n
0 , pb,cond) ≤

dTV (p
⊗n
0 , Eb(p

(n)
b )) + 2ϵ.

Proof of Lemma. We have:

dTV
(
pb,cond, Eb(p

(n)
b )

)
= sup

A

∣∣∣pb,cond(A)− pb,cond(A)P(Asep)−E
[
p
(n)
b (A|Acsep)

]
P(Acsep)

∣∣∣
≤ sup

A

∣∣∣pb,cond(A)(1−P(Asep))
∣∣∣+ P(Acsep) ≤ 2ϵ,

so that: dTV
(
p⊗n

0 , pb,cond
)
≤ dTV

(
p⊗n

0 , Eb(p
(n)
b )

)
+ dTV

(
Eb(p

(n)
b ), pb,cond

)
≤ dTV

(
p⊗n

0 , Eb(p
(n)
b )

)
+ 2ϵ.

3.F.5 Technical results

Lemma 43. It holds:
∫

T (2C̄Lhα) p0 ≥ 1
2
∫

T (uB) p0.
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Proof of Lemma 43. We have:

2C̄Lhα
∫

T (uB)\T (2C̄Lhα)
p0 ≤

∫
T (uB)

p2
0 ≤

C̄

n2hd
by Lemma 5.

Therefore: ∫
T (uB)

p0 −
∫

T (2C̄Lhα)
p0 ≤

1
2

∫
T (uB)

p0.

Lemma 44. It holds pU < C44Lhα+d where C44 = 2C̄(1 + c⋆) +
√
d
α and h = htail(uB).

Proof of Lemma 44. Fix j ∈ N∗ such that C̃j ∩ T (2C̄Lhα+d) ̸= ∅ and x ∈ C̃j such that p0(x) <
2C̄Lhα+d. Then by Assumption (⋆), for all y ∈ C̃j

p0(y) ≤ (1 + c⋆)p0(x) + Lhα
√
d
α
< C44Lh

α

so that pj ≤ C44Lα+d. Therefore, if we had pU ≥ C44Lhα+d, then necessarily, T (2C̄Lhα) ⊂ ⋃
j≥U

C̃j ,

hence:

cu
n2 ≥ pU

∑
j≥U

pj ≥ C44Lh
α+d

∫
T (2C̄Lhα)

p0 ≥
C44
2n2 >

cu
n2

for cu small enough. Contradiction.

Lemma 45. Set h = htail(uB) and assume that the tail dominates i.e. CBTρ∗
bulk ≤ ρ∗

tail. For all
j ∈ N∗, j ≥ 2, if pj ≤ C44Lhα+d then pj−1 ≤ C45Lhα+d where C45 is a constant depending only
on C44.

Proof of Lemma 45. Let j ∈ N∗, j ≥ 2 and zj ∈ C̃j such that p0(zj)hd = pj and assume pj <
C44Lhα+d. Set C ′

45 = 4(1 + c⋆)C44 +
√
d
α.

Let y ∈ T (uB) such that p0(y) = C ′
45Lh

α. We can assume C ′
45Lh

α < uB by choosing CBT large
enough. Indeed, by Lemma 10, we have uB ≥ cAL inf

x∈B
hαb (x) ≥ cALC

(2)α
BT hαtail(uB) and choosing

CBT large enough ensures that C(2)α
BT is large enough. Denote by l the index of the cube C̃l

containing y.

• First, pl > pj . Indeed, for all z ∈ C̃l we have

p0(z) ≥ (1− c⋆)C ′
45Lh

α −Lhα
√
d
α
≥ (3C44 −

√
d
α
)Lhα ≥ 2C44Lh

α,

hence pl =
∫
C̃j
p0(z)dz ≥ 2C44Lhα+d > pj .

• Second, for all z ∈ C̃l we have p0(z) ≤ (1 + c⋆)C ′
45Lh

α +
√
d
α
Lhα =: C45Lhα hence pl ≤

C45Lhα.
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Since the (pl)l are sorted in decreasing we also have pj−1 ≤ C45Lhα.

Lemma 46. Suppose that the tail dominates, i.e.: ρ∗
tail ≥ CBTρ

∗
bulk. There exists a constant D

such that whenever
∫

T (uB) p0 ≥ ctail
n , it holds:

∑
j≥U

pj ≥ D
∫

T (uB)
p0.

Moreover, D can be made arbitrarily small by choosing cu small enough and ctail large enough,
successively.

Proof of Lemma 46. Recall that by Lemma 44, pU ≤ C44Lhα+d. Therefore, we cannot have U = 1.
Indeed, there always exists j ∈N∗ such that for some x ∈ C̃1, p0(x) = uB and for this index j:

∀y ∈ C̃j : p0(y) ≥ (1− c⋆)uB −Lhα
√
d
α
> C44Lh

α (3.145)

for CBT large enough, by Lemma 10 and recalling uB ≥ cALmin
B
hαb . Therefore, p1 > C44Lhα+d ≥

pU hence U ≥ 2. We can then write, by definition of U :

pU−1
∑

j≥U−1
pj >

cu
n2 ,

where pU−1 ≤ C45Lhα+d by Lemma 45. Therefore:∑
j≥U

pj >
cu

n2pU−1
− pU−1 ≥

cu
n2C45Lhα+d

−C45Lh
α+d

=
cu
C45

∫
T (uB)

p0 −
C45

n2 ∫
T (uB) p0

≥ cu
C45

∫
T (uB)

p0 −
C45
c2
tail

∫
T (uB)

p0 ≥ D
∫

T (uB)
p0.

Choosing c2
tail ≥

C2
45

2cu yields the result with D = cu
C45
− C45

c2
tail

.

Lemma 47. In the case where the tail dominates, i.e. when ρ∗
tail ≥ CBTρ

∗
bulk, there exists a

constant C47 such that
∑
j≥U

pj ≤ C47
∫

T (uB) p0.

Proof of Lemma 47. Set h = htail(uB). Proceeding like in equation (3.145), it is impossible that
∃j ≥ U , ∃x ∈ C̃j : p0(x) = uB. For all j ≥ U , we therefore have: sup

C̃j
p0 < v ≤ uB, hence⋃

j≥U C̃j ⊂ T (uB), which yields
∫⋃

j≥U C̃j
p0 ≤

∫
T (uB) p0.

Lemma 48. Whenever the tail dominates, i.e. when ρ∗
tail ≥ CBTρ∗

bulk, there exists a constant C48
such that

∫ ⋃
j≥U

C̃j
p2

0 ≤ C48
1

n2hd
.
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Proof of Lemma 48. Set h = htail(uB). Proceeding like in equation (3.145), we have: sup
C̃j
p0 <

v ≤ uB, hence ⋃
j≥U

C̃j ⊂ T (uB), which yields by Lemma 5:
∫ ⋃
j≥U

C̃j
p2

0 ≤ C̄
n2hd

.

Lemma 49. Let p ∈ PRd(α,L, c⋆) and Ω′ ⊂ Ω a countable union of cubic domains of Rd.

1. If
∫

Ω′ p ≤ c
n for some constant c > 0, then

(∫
Ω′
pt
)1/t

≤ A49(c) · ρ∗
r ,

for A49(c) a constant depending only on c, η, d,α and t. Moreover, A49(c) →
c→0

0 and A49(c) →
c→+∞

+∞.

2. There exists a constant B49 such that ∥p∥t ≤ B49 ·L
d(t−1)
t(α+d) .

Proof of Lemma 49. Let x ∈ Rd \Ω′ and let h =
(
p(x)
4L

)1/α
. By Assumption (⋆), we have for all

y ∈ B(x,h):

p(y) ≥ p0(x)

2 −L
(
p(x)

4

)
=
p(x)

4 .

Moreover, by assumption over Ω′, Vol
(
B(x,h) ∩ (Rd \Ω′)

)
≥ 1

2Vol(B(x,h)). Therefore:

∫
Rd\Ω′

p ≥ p(x)

4
1
2Vol(B(x,h)) = Cd

p(x)
α+d
α

Ld/α , (3.146)

where Cd =
Vol(B(0,1))

8×4d/α .

1. Therefore, if
∫

Rd\Ω′ p ≤ c
n , then p(x) ≤

(
c
Cd

Ld

nα

) 1
α+d , which yields:

∫
Rd\Ω′

p2 ≤
(
c

Cd

Ld

nα

) 1
α+d

× c

n
= c

(
c

Cd

) 1
α+d L

d
α+d

n
2α+d
α+d

.

Now, by Hölder’s inequality, we have

∫
Rd\Ω′

pt ≤
(∫

Rd\Ω′
p

)2−t(∫
Rd\Ω′

p2
)t−1

=: At49(c)ρ
∗
r
t

2. The proof of the second assertion follows the same lines. We have by Equation (3.146) that
∀x ∈ Rd : 1 =

∫
Rd p ≥ Cd

p(x)
α+d
α

Ld/α , hence p(x) ≤ 1
C
α/(α+d)
d

L
d

α+d for all x ∈ Rd. Therefore,
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∫
Rd p

2 ≤ 1
C
α/(α+d)
d

L
d

α+d
∫

Rd p ≤
1

C
α/(α+d)
d

L
d

α+d , so that by Hölder’s inequality:

∫
Rd
pt ≤

(∫
Rd
p

)2−t (∫
Rd
p2
)t−1

= C
α(1−t)
α+d

d L
d(t−1)
α+d =: Bt

49L
d(t−1)
α+d .

3.G Homogeneity and rescaling
Introduce, for any cubic domain Ω ⊂ Rd:

PΩ(α,L, c⋆) =
{
p density over Ω′

∣∣∣ p ∈ H(α,L) and p satisfies (⋆) over Ω′
}

, (3.147)

For λ > 0, define the rescaling operator:

Φλ :


PλΩ(α,L, c⋆) −→ PΩ(α,Lλα+d, c⋆)

p 7−→ λd p(λ · )
(3.148)

where p(λ · ) : x 7→ p(λx) and λΩ = {λx : x ∈ Ω}. For any cubic domain Ω ⊂ Rd, we define
ρ∗

Ω(p0,α,L,n) as the minimax separation radius for the following testing problem over Ω, upon
observing X1, . . . ,Xn iid with density p ∈ PΩ(α,L, c⋆)

H0 : p = p0 versus

H
(Ω)
1 (ρ) : p ∈ PΩ(α,L′, c′

⋆) s.t. ∥p− p0∥t ≥ ρ.
(3.149)

Proposition 3.15. (Rescaling) Let λ > 0 and let p0 ∈ PλΩ(α, L, c⋆). It holds

ρ∗
Ω

(
Φλ(p0), α, Lλα+d, n

)
= λd−d/t ρ∗

λΩ (p0,α,L,n) .

Proposition 3.16. (Restriction of support) Let p0 ∈ PΩ(α,L, c⋆) and Ω′ ⊂ Ω another (possibly
bounded) cubic domain of Rd. Assume that the support of p0 is included in Ω′. Then

ρ∗
Ω(p0,n,α,L) ≍ ρ∗

Ω′(p0,n,α,L).

Proof of Proposition 3.15. It is direct to prove that ∀λ > 0, Φλ is well-defined and bijective. We
can also immediately check that

∀p, q ∈ PλΩ(α,L, c⋆) : ∥Φλ(p)−Φλ(q)∥t = λd−d/t∥p− q∥t.

Let ψ∗
λ be a test such that

∀p ∈ PλΩ(α,L, c⋆) : ∥p− p0∥t ≥ Cρ∗
λΩ (p0,α,L,n) =⇒ Pp0(ψ

∗
λ = 1) + Pp(ψ

∗
λ = 0) ≤ η,
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for some constant C. Now, let p̃ ∈ PΩ(α,Lλα+d, c⋆) such that

∥p̃−Φλ(p0)∥t ≥ Cλd− d
t ρ∗

λΩ (p0,α,L,n) .

It then follows that ∥Φλ−1(p̃) − p0∥t ≥ Cρ∗
λΩ (p0,α,L,n) hence Pp0(ψ

∗
λ = 1) + PΦλ−1 (p̃)

(ψ∗
λ =

0) ≤ η i.e PΦλ(p0)(ψ
∗ = 1) + Pp̃(ψ

∗ = 0) ≤ η where ψ∗(x1, . . . ,xn) = ψ∗
λ(λx1, . . . ,λxn). There-

fore, Cλd−d/tρ∗
λΩ (p0,α,L,n) ≥ ρ∗

Ω

(
Φ(p0),α,Lλα+d,n

)
and the converse bound can be proved by

symmetry using Φλ−1 .

Proof of Proposition 3.16. Clearly ρ∗
Ω(p0) ≥ ρ∗

Ω′(p0). For the converse bound, we define ψout =

1

{
n∨
i=1

(Xi /∈ Ω′)

}
the test rejecting H0 whenever one of the observations Xi belongs to Ω \Ω′.

Lemma 49 shows that, for cout and Cout two large enough constants, if p ∈ PΩ(α,L, c⋆) is such
that

∫
Ω\Ω′ pt ≥ Coutρ∗

r
t then

∫
Ω\Ω′ p ≥ cout

n , so that Pp(ψout = 1) > 1 − η/2. Now, assume
∥p− p0∥t ≥ Cρ∗

Ω′(p0) over Ω, for C a large enough constant, and let ψ∗ be an optimal test over
Ω′, i.e. such that Pp0,Ω′ (ψ

∗ = 1) + PpΩ′ (ψ
∗ = 0) ≤ η whenever ∥p− p0∥t ≥ C ′ρ∗

Ω′(p0). Then if∫
Ω\Ω′ pt ≥ Coutρ∗

r
t, PpΩ′ (ψout ∨ ψ∗ = 0) ≤ η/2. Otherwise,

∫
Ω′ |p− p0|t ≥ C ′ρ∗

Ω(p0)− Coutρ∗
r ≥

C′

2 ρ
∗
Ω(p0) so that PpΩ′ (ψout ∨ψ∗ = 0) ≤ η/2 for C ′ large enough. Moreover, under H0 , we clearly

have Pp0(ψout ∨ψ∗ = 1) ≤ η/2. Hence the result.

3.H Proofs of examples

3.H.1 Uniform distribution

See [183] for λ = 1 and use Proposition 3.15 for arbitrary λ > 0.

3.H.2 Arbitrary p0 over Ω = [−1, 1]d with L = 1

First, note that by equation (3.146), p0 is upper bounded by a constant denoted by Cmax since
L = 1. For any small constant c, there exists a fixed constant δ > 0 such that for all p0 with
support over [−1, 1]d, the set {p0 ≥ c} has Lebesgue measure at least δ. Fix such a c. Now, there
exists a constant n0 such that for all n ≥ n0, for all p0, uaux(p0) ≤ c. We then have

Crmax2d ≥
∫

B(uaux)
pr0 ≥ crδ which is a constant.

Therefore, ρ∗
bulk

t ≍ n− 2αt
4α+d .

As for the tail, we have by the Cauchy-Schwarz inequality and Lemma 5

(∫
T (uB)

p0

)2

≤

(∫
T (uB) p0

)2∣∣∣T (uB) ∩ [0, 1]d
∣∣∣ ≤

∫
T (uB)

p2
0 ≤ C̄L̃

1
α+d

(∫
T (uB)

p0

) d
α+d
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hence

p0[T ] ≤ C̄
α+d

2α+d n− 2α
2α+d .

We can now immediately check that ρ∗
bulk ≫ ρ∗

tail and ρ∗
bulk ≫ ρ∗

r as n → ∞. Since ρ∗
bulk is

independent of p0, the result is proven.

3.H.3 Spiky null

Set p̃0(x) =
f

∥f∥1
over Rd. Since p̃0 takes nonzero values only over [±1

2 ]
d we have ρ∗(,α, 1,n) ≍

n− 2α
4α+d by the preceding case. Now, by homogeneity (see Proposition 3.15), we have ρ∗(p0,α,L,n) =

L
d(t−1)
t(α+d) ρ∗(p̃0,α, 1,n), which yields the result.

3.H.4 Gaussian null

Note that ∫
∥x∥>b

p0(x)dx = e− b2
2σ2 (1+o(1)) when b→ +∞. (3.150)

Therefore, noting bI the unique value such that if ∥x∥ = bI , then p0(x) = uaux, we have by the
definition of uaux that bI = σ2 4α

2α+d log(n)(1 + o(1)) when n → +∞. By Lemma 6 and using
(3.150), it holds

∫
T (uB) p0 ≍

∫
T̃ (uaux)

p0 =
∫

T (uaux)
p0 = n− 2α

2α+d (1+o(1)) ≫ 1
n , so that the tail rate

writes
ρ∗
tail ≍ L

d(t−1)
t(α+d)n− 2α

2α+d (1+o(1)) ≫ ρ∗
r .

Now, by direct calculation, ρ∗
bulk ≍

L
d

4α+d

n
2α

4α+d
(σd)

(4−3t)α+d
t(4α+d) and we can immediately check that it is the

dominant term.

3.H.5 Pareto null

Fix d = t = 1 and α ≤ 1. We let qaux > x1 denote the unique value such that p0(qaux) = uaux.
By the definition of uaux and using simple algebra we get qaux ≍ L̃

− 1
3β+α+1 . Moreover, we have

by Lemma 6 that
∫

T (uB) p0 ≍
∫

T̃ (uaux)
p0 =

∫
T (uaux)

p0 = L̃
β

3β+α+1 so that (by recalling t = 1):

ρ∗
tail ≍

∫
T (uB) p0 ≍ L̃

β
3β+α+1 ≫ ρ∗

r . Now, we can easily get ρ∗
bulk ≍ L̃

1
4α+1 ≪ ρ∗

tail which ends the
proof.

163



Part II
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Chapter 4

Robust learning under local
differential privacy

This Chapter is based on the paper “Robust Estimation of Discrete Distributions under Local
Differential Privacy” [169], by Julien Chhor and Flore Sentenac (arXiv:2202.06825).

Abstract

Although robust learning and local differential privacy are both widely studied fields of
research, combining the two settings is just starting to be explored. We consider the problem of
estimating a discrete distribution in total variation from n contaminated data batches under a
local differential privacy constraint. A fraction 1− ϵ of the batches contain k i.i.d. samples drawn
from a discrete distribution p over d elements. To protect the users’ privacy, each of the samples
is privatized using an α-locally differentially private mechanism. The remaining ϵn batches
are an adversarial contamination. The minimax rate of estimation under contamination alone,
with no privacy, is known to be ϵ/

√
k +
√
d/kn, up to a

√
log(1/ϵ) factor. Under the privacy

constraint alone, the minimax rate of estimation is
√
d2/α2kn. We show that combining the

two constraints leads to a minimax estimation rate of ϵ
√
d/α2k+

√
d2/α2kn up to a

√
log(1/ϵ)

factor, larger than the sum of the two separate rates. We provide a polynomial-time algorithm
achieving this bound, as well as a matching information theoretic lower bound.

Keywords Privacy, Robustness, Adversarial Contamination, Multionmial Distributions, Statistical
Optimality.

4.1 Introduction
In recent machine learning developments, the growing need to analyze potentially corrupted, bi-
ased or sensitive data has given rise to unprecedented challenges. To extract relevant information
from today’s data, studying algorithms under new learning constraints has emerged as a major
necessity. To name a few, let’s mention learning from incomplete data, transfer learning, fairness,
robust learning or privacy. Although each one of them has been subject to intense progress in
recent works, combining several learning constraints is not conventional. In this work, we propose
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to study how to estimate discrete distributions under the constraint of both being robust to adver-
sarial contamination and of ensuring local differential privacy.

On the one hand, robust learning has received considerable attention over the past decades. This
recent research has been developing in two main directions. The first one deals with robustness
to heavy tails, see [58], see also [113] for an excellent review. The second one explores robustness
to outliers. It mainly considers two contamination models, which are the Huber contamination
model [6], [21], [181], [49], where the outliers are iid with an unknown probability distribution, and
the adversarial contamination, where the outliers are added by a malicious adversary who knows
the estimation procedure, the underlying distribution and the data and seeks to deteriorate the
procedure’s estimation performance ([110, 55, 171, 141]).

On the other hand, preserving the privacy of individuals has emerged as a major concern, as more
and more sensitive data are collected and processed. The most commonly used privatization frame-
work is that of differential privacy ([43], [125], [174], [124], [156]). Both central and local models
of privacy are considered in the field. In the centralized case, a global entity collects the data
and analyzes it before releasing a privatized result, from which the original data should not be
possible to infer. In local privacy, the data themselves are released and should remain private
([68]). The paper focuses on the latter notion. A vast line of work also studies private mechanism
under communication constraints ([148], [117], [119]), which we do not consider here, but adding a
communication constraint would be interesting future work.

Connections between robustness and global differential privacy have been recently discussed in
([115, 112], [145]). These papers show that the two notions rely on the same theoretical concepts,
and that results in the two fields are related. In other words, robustness and global differential
privacy work well together. Several papers developed algorithms under robustness and global dif-
ferential privacy constraints ([163], [160], [164], [151]).

In this paper, we study how local differential privacy interacts with robustness. This interaction has
been studied previously in [157], where the authors provide upper and lower bound for estimating
discrete distributions under the two constraints. The lower bound was later tightened in [150]. The
papers also study testing. We detail in Section 4.1.1 how our setting is a generalization of theirs.
The work of [176] also considers this interaction. We explain in more details the differences between
their setting and ours in Section 4.1.1.

In this paper, we study how to combine robust statistics with local differential privacy for estimating
discrete distributions over finite domains. Assume that we want to gather information from n data
centers (think of n hospitals for instance). For each of them, we collect k iid observations with
unknown discrete distribution p to be estimated. To protect the users’ privacy (patients data
in the hospital example), each single one of the nk observations is privatized using an α-locally
differentially private mechanism (see the formal definition of local differential privacy in Subsection
4.2.1). However, an ϵ-fraction of the data centers are untrustworthy and can send adversarially
chosen data. The goal is to estimate p in total variation distance (or ℓ1 distance) from these n
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corrupted and privatized batches of size k. This setting is quite natural, as in many applications,
the data are collected in batches, some of which may be untrustworthy or even adversarial.

4.1.1 Related work

With the local differential privacy constraint only (i.e. without contamination), the problem of esti-
mating discrete distributions has been solved in ([38], [54])where the authors propose a polynomial-
time and minimax optimal algorithm for estimation under ℓ1 and ℓ2 losses. Note that without
privacy and outliers, the minimax estimation rate in ℓ1 is known to be

√
d
N , where N is the number

of iid samples with a discrete distribution over d elements (see, e.g. [73]). The paper [68] shows
that under privacy alone, the ℓ1 minimax rate scales as d

α
√
N

. We give an alternative proof of the
lower bound of [68], in Appendix 4.D.

With the robustness constraint only (i.e. with n adversarially corrupted batches but without local
differential privacy), the problem of estimating discrete distributions has been considered in [93].
For k = 1, it is well known that Ω(ϵ) error is unavoidable. However, [93] surprisingly prove that
the error can be reduced provided that k is large enough. More precisely, they show that with no
privacy but under contamination, the minimax risk of estimation under ℓ1 loss from n batches of
size k and ϵ adversarial corruption on the batches scales as

√
d
N + ϵ√

k
, where N = nk. [93] both

provide an information theoretic lower bound and a minimax optimal algorithm, unfortunately
running in exponential time in either k or d. Polynomial-time algorithms were later proposed by
[130], [138] and were shown to reach the information theoretic lower bound up to an extra

√
log( 1

ϵ )
factor. In this specific setting, it is not known if this extra factor represents a computational gap
between polynomial-time and exponential-time algorithms. However, for the problem of robust
mean estimation of normal distributions, some lower bounds suggest that this exact quantity can-
not be removed from the rate of computationally tractable estimators (see [89]).

Closer to our setting, the papers by [157], [150] and [176] combine robustness with local differential
privacy. The problem studied here is a generalisation of the first two papers where the authors
consider un-batched data, which corresponds to k = 1 in our setting. The setting considered
by [176] is not the same as ours, as do not consider discrete distributions and implicitly assume
k = 1. More importantly, in their setting, contamination comes before privacy: some of the
raw data X1, . . . ,Xn are outliers themselves, and the privacy mechanism is applied on each Xi.
Conversely, in our work and in the previous two papers, contamination occurs after privacy: none
of the raw data are outliers and the adversary is allowed to choose the contamination directly on
the set of privatized data. As we will highlight below, this difference yields fundamentally different
phenomena compared to the results in [176].

4.1.2 Summary of the contributions

In this paper, we study the interplay between local differential privacy and adversarial contami-
nation, when the contamination comes after the data have been privatized. In this case, we prove
that the resulting estimation rate is not merely the sum of the two estimation rates stated in [68]
and [93] but is always slower. More specifically, the term due to the contamination in the bound
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suffers a multiplicative inflation of
√
d/α. This generalizes a phenomenon first observed in [157].

This phenomenon stands in contrast with [176], for which the resulting rate is exactly the sum of
the rate with privacy but no contamination, plus the rate with contamination but no privacy. The
reason is that in [176], contamination occurs before privacy. We provide an explicit algorithm that
returns an estimator achieving the optimal bound up to a factor

√
log(1/ϵ), and runs polynomially

in all parameters. This algorithm is an adaptation to our setting of methods that were previously
used for robust estimation of discrete distributions ([138, 161]). On a side note, the algorithms
introduced in [157] and [150] require the use of a public coin. The proposed algorithm also holds
in their setting and relieves this assumption.

4.2 Setting

4.2.1 Definitions

For any integer d ≥ 2, denote by Pd =

{
p ∈ Rd

∣∣∣ ∀j : pj ≥ 0 and ∑d
j=1 pj = 1

}
the set of

probability vectors over {1, . . . , d}. For any x ∈ Rd, we write ∥x∥1 =
∑
j∈[d]
|xj | and ∥x∥22 =

∑
j∈[d]

x2
j .

For any two probability distributions p, q over some measurable space (X ,A), we denote by

TV (p, q) = sup
A∈A
|p(A)− q(A)| the total variation between p and q.

Fix α ∈ (0, 1) and consider two measurable spaces (X ,A) and (Z,B). A Markov transition kernel
Q : (X ,A) → (Z,B) is said to be a (non-interactive) α-locally differentially private mechanism if
it satisfies

sup
B∈B

sup
x,x′∈X

Q(B|x)
Q(B|x′)

≤ eα. (4.1)

For any x ∈ X , we say that the random variable Z is a privatized version of x if Z ∼ Q(·|x).
The measurable space (Z,B) is called the image space of Q. In what follows, we use the Landau
notation O which hides an absolute constant, independent of d, ϵ,n, k,α,Q, p.

4.2.2 Model

We consider the problem of learning a discrete distribution p over a finite set {1, . . . , d}, d ≥ 3 under
two learning constraints: a) ensuring α-local differential privacy and b) being robust to adversarial
contamination. To this end, we assume that the data are generated as follows. For some small
enough absolute constant c ∈ (0, 1

100 ) and for some known corruption level ϵ ∈ (0, c), we will use
the notation n′ = n(1− ϵ) throughout and assume that n′ ∈N.

1. First, n′ iid batches of observations X1, . . . ,Xn′ are collected. More precisely, each batch
Xb can be written as Xb = (Xb

1, . . . ,Xb
k) and consists of k iid random observations with an

unknown discrete distribution p ∈ Pd, i.e. ∀(b, l, j) ∈ [n′]× [k]× [d] : P(Xb
l = j) = pj .

2. Second, we privatize each of the n′k observations using an α-LDP mechanism Q, yielding n′

iid batches Y 1, . . . ,Y n′ such that Y b = (Y b
1 , . . . ,Y b

k ) where Y b
l |Xb

l ∼ Q(·|Xb
l ). We denote
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by Qp the distribution of any random variable Y b
l . We then have: Qp(dz) = ∑

j∈[d]
pjQ(dz|j),

where Q(dz|j) is a shorthand for Q(dz|X = j). The mechanism Q is chosen by the statistician
in order to preserve statistical performance while ensuring privacy.

3. An adversary is allowed to build nϵ batches Y n′+1, . . . ,Y n on which no restriction is imposed.
Then, he shuffles the set of n batches (Y1, . . . ,Yn). The resulting set of observations, denoted
as B = (Z1, . . . ,Zn), is referred to as the ϵ-corrupted family of batches.

The observed dataset therefore consists of n = |B| batches of k samples each. Among these batches
is an unknown collection of good batches BG ⊂ B of size n(1 − ϵ), corresponding to the non-
contaminated batches. The remaining set BA = B \BG of size nϵ, denotes the unknown set of
adversarial batches.

The statistician never has access to the actual observations X1, . . . ,Xn′ , but only to Z1, . . . ,Zn
where Zb = (Zb1, . . . ,Zbk). Each batch is assumed to be either entirely clean or adversarially cor-
rupted. Note that observing n batches of size k encompasses the classical case where k = 1, for
which the data consist of n iid and ϵ-corrupted single observations rather than batches. On top
of being more general, the setting with general k allows us to derive faster rates for large k than
for the classical case k = 1. Note also that in our setting, the contamination comes after the data
have been privatized, which is one of the main differences with [176], where the authors assume
that the Huber contamination comes before privacy. The examples considered by the authors are
1-dimensional mean estimation and density estimation without batches (i.e. for k = 1). In these
settings, the authors surprisingly prove that the algorithm that would be used in absence of cor-
ruption is automatically robust to Huber contamination.

In our setting, we would like to answer the following questions:
1. When contamination comes after privacy, do we need to design robust procedures or would

the private procedure be automatically robust like in [176]?
2. If Qϵ denotes the optimal privacy mechanism for ϵ-contamination, how does Qϵ depend on ϵ?

We answer these questions as follows:
1. With contamination after privacy, the procedure that we would use if there were no contam-

ination is no longer robust and a new algorithm is needed.
2. The optimal privacy mechanism Qϵ does not depend on ϵ, whereas the optimal estimator

does.

We introduce the minimax framework. An estimator p̂ is a measurable function of the data taking
values in Pd.

p̂ : Znk −→ Pd.

For any set of n′ clean batches Y 1, . . . ,Y n′ where Y b = (Y b
1 , . . . ,Y b

k ) and n′ = n(1− ϵ), we define
the set of ϵ-contaminated families of n batches as

C(Y 1, . . . ,Y n′
) =

{
(Zb)nb=1

∣∣∣∣ ∃J⊂[n] s.t. |J |=nϵ and {Z b}b/∈J = {Y 1, . . . ,Y n′}
}

. (4.2)
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We are interested in estimating p ∈ Pd with guarantees in high probability. We therefore introduce
the minimax estimation rate of p in high probability as follows.

Definition 4.1. Given δ > 0, the minimax rate of estimation rate of p ∈ Pd given the privatized
and ϵ-corrupted batches (Zb)nb=1 where ∀i ∈ {1, . . . ,n} : Zb = (Zb1, . . . Zbk) is defined as the quantity
ψ∗
δ (n, k,α, d, ϵ) satisfying

ψ∗
δ (n, k,α, d, ϵ) = inf

ψ > 0
∣∣∣∣ inf
p̂,Q

sup
p∈Pd

P

(
sup

z∈C(Y )

∥∥∥p̂(z)− p∥∥∥
1
> ψ

)
≤ δ

. (4.3)

where the infimum is taken over all estimators p̂ and all α-LDP mechanisms Q, and the expectation
is taken over all collections of n′ clean batches Y 1, . . . ,Y n′ where Y b = (Y b

1 , . . . ,Y b
k ) and Y b

l
iid∼ Qp.

Informally, ψ∗
δ represents the infimal distance such that there exists an estimator p̂ able to estimate

any p ∈ Pd within total variation ψ∗
δ with probability ≥ 1− δ. The ℓ1 norm is a natural metric for

estimating discrete distributions since TV (p, q) = 1
2∥p− q∥1 for any p, q ∈ Pd (see [188]).

4.3 Results
We now state our main Theorem.

Theorem 4.1. Assume d ≥ 3. There exist absolute constants c,C,C ′,C ′′ > 0 such that for
δ = C ′e−d, we have:

ψ∗
δ (n, k,α, ϵ, d) ≥ c

{(
d

α
√
kn

+
ϵ

α

√
d

k

)
∧ 1
}

,

and if n ≥ C ′′d then

ψ∗
δ (n, k,α, ϵ, d) ≤ C

{(
d

α
√
kn

+
ϵ
√

log(1/ϵ)

α

√
d

k

)
∧ 1
}

.

In short, we prove that with probability at least 1−O(e−d), it is possible to estimate any p ∈ Pd

within total variation of the order of
(

d
α

√
kn

+ ϵ
α

√
d
k

)
∧ 1 up to log factors and provided that

n ≥ C ′′d. We can compare this rate with existing results in the literature.

• As shown in [68], the term d
α

√
kn
∧ 1 corresponds to the estimation rate under privacy if there

were no outliers, with a total number of observations of N = nk.

• The term ϵ
√
d

α
√
k
∧ 1 reveals an interesting interplay between contamination and privacy. In

absence of privacy, [93] proved that the contribution of the contamination is of the order of
ϵ√
k
∧ 1. The effect of the corruption therefore becomes more dramatic when it occurs after

privatization.

• Letting k′ = α2

d k, our rate rewrites ψ∗(n, k,α, ϵ, d) ≍
(√

d
k′n +

ϵ√
k′

)
∧ 1. Noticeably, this rate

exactly corresponds to the rate from [93] if we had an ϵ-corrupted family of n non-privatized
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batches X1, . . . ,Xn, and if each batch contained k′ observations. The quantity k′ therefore
acts as an effective sample size and the effect of privacy amounts to shrinking the number of
observations by a factor α2/d.

• For the upper bound, the assumption n ≥ C ′′d is classical in the robust statistics literature,
even in the gaussian setting (see e.g. [171]).

4.3.1 Lower bound

The following Proposition yields an information theoretic lower bound on the best achievable esti-
mation accuracy under local differential privacy and adversarial contamination.

Proposition 4.1. Assume d ≥ 3. There exist two absolute constants C, c > 0 such that for all
ϵ ∈ (0, 1

2 ), for all estimator p̂ and all α-LDP mechanism Q, there exists a probability vector p ∈ Pd
satisfying

Pp

 sup
z′∈C(Y )

∥∥∥p̂(z′)− p
∥∥∥

1
≥ c

{(
d

α
√
kn

+
ϵ
√
d

α
√
k

)
∧ 1
} ≥ Ce−d,

where the probability Pp is taken over all collections of n′ clean batches Y = (Y 1, . . . ,Y n′
) where

Y b = (Y b
1 , . . . ,Y b

k ) and Y b
l
iid∼ Qp.

The proof is given in Appendix 4.C. At a high level, the term d
α

√
kn
∧ 1 comes from the classical

lower bound given in [68]. The proof of the second term ϵ
√
d

α
√
k
∧ 1 is new. It is based on the fact

that for any α-LDP mechanism Q, it is possible to find two probability vectors p, q ∈ Pd such that
∥p− q∥1 ≳ ϵ

√
d

α
√
k
∧ 1 and TV (Qp⊗k,Qq⊗k) ≤ ϵ. In other words, we prove:

inf
Q

sup
(p,q)∈Pd:

TV (Qp⊗k,Qq⊗k)≤ϵ

∥p− q∥1 ≳
ϵ
√
d

α
√
k
∧ 1.

In the proof, we argue that TV (Qp⊗k,Qq⊗k) ≤ ϵ represents an indistinguishability condition under
ϵ-contamination. Namely, it implies that, even if we had arbitrarily many clean batches drawn from
p or q, the adversary could add nϵ corrupted batches such that the resulting family of batches has
the same distribution under p or q. By observing this limiting distribution, it is therefore impos-
sible to recover the underlying probability distribution so that an error of ∥p− q∥1/2 is unavoidable.

To exhibit two vectors p, q ∈ P satisfying this, we restrict ourselves to vectors satisfying χ2(Qp||Qq) ≤
C ϵ2

k for some small enough absolute constant C > 0, which implies that TV (Qp⊗k,Qq⊗k) ≤ ϵ
(see [188] section 2.4). Noticeably, we prove the relation

χ2(p||q) = ∆TΩ∆,

where ∆ = p − q and Ω = Ω(Q) =

[∫
Z

(
Q(z|i)
Q(z|1) − 1

) (
Q(z|j)
Q(z|1) − 1

)
Q(z|1)dz

]
i,j∈[d]

is a nonnegative

symmetric matrix. The eigenvectors of Ω play an important role. Namely, we prove that we can
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choose a vector ∆ in the span of the first ⌈2d
3 ⌉ eigenvectors of Ω such that ∆TΩ∆ ≤ C ϵ2

k and
∥∆∥1 ≳ ϵ

√
d

α
√
k
∧ 1. Defining the vectors p =

(
|∆j |
∥∆∥1

)d
j=1
∈ Pd and q = p− ∆ ends the proof.

4.4 Upper bound
We now address the upper bound by proposing an α-LDP mechanism Q for privatizing the clean
data X1, . . . ,Xn′ as well as an algorithm p̂ for robustly estimating vector p given an ϵ-contaminated
family of n batches Z1, . . . ,Zn.

Each non-private data point Xb
i ∈ [d] is privatized using the RAPPOR algorithm introduced in

([68, 82]). In this procedure, the privatization channel Q randomly maps each point X ∈ [d] to a
point Z ∈ {0, 1}d by flipping its coordinates independently at random with probability λ = 1

eα/2+1 :

∀j ∈ [d] : Z(j) =

1X=j with probability 1− λ,
1− 1X=j otherwise.

We now derive a polynomial-time algorithm taking as input the ϵ-contaminated family of batches
(Zb)b∈[n] and returning an estimate p̂ for p with the following properties.

Theorem 4.2 (Upper Bound). For any ϵ ∈ (0, 1/100], α ∈ (0, 1], if n ≥ 4d
ϵ2 ln(e/ϵ) , Algorithm 4

runs in polynomial time in all parameters and its estimate p̂ satisfies ||p̂− p||1 ≲ ϵ
α

√
d ln(1/ϵ)

k w.p.
at least 1−O(e−d).

If n ≥ O(d), then there exists ϵ′ ∈ (0, 1/100] s.t. n = 4d
(ϵ′)2 ln(1/ϵ′) . Running the algorithm with that

parameter ϵ′ rather than the true ϵ gives the following result.

Corollary 4.1. If n ≥ O(d), then the algorithm’s estimate satisfies ||p̂− p||1 ≲ d
α

√
e
nk with proba-

bility at least 1−O(e−d).

Theorem 4.2 and Corollary 4.1 yield the upper bound. We have not seen the regime d ≤ n explored
in the literature, even with robustness only. This would be an interesting research direction for
future work. Note that for the estimate p̂ given by Algorithm 4 we can have ∥p̂∥1 ̸= 1. The next
corollary, proved in Appendix 4.B, states that normalizing p̂ yields an estimator in Pd with the
same estimation guarantees as in Theorem 4.2.

Corollary 4.2. Let the assumptions of Theorem 4.2 be satisfied and let p̂ denote the output of
Algorithm 4. Define p̂∗ = p̂+

∥p̂+∥1
where p̂+(j) = 0∨ p̂(j) for all j ∈ [d], then ||p̂∗−p||1 ≤ 2||p̂−p||1 ≲

ϵ
α

√
d ln(1/ϵ)

k holds with probability at least 1−O(e−d).

4.4.1 Description of the algorithm

We now give a high level description of our algorithm. It is based on algorithms for robust discrete
distribution estimation, [138, 161]. For each S ⊆ [d], define q(S) =

∑
j∈S

qj and p(S) =
∑
j∈S

pj .
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The quantities q̂, p̂ will respectively denote the estimators of p and q. Recalling that TV (p, p̂) =
supS⊆[d]

∣∣∣p(S)− p̂(S)∣∣∣, we aim at finding p̂ satisfying
∣∣∣p(S)− p̂(S)∣∣∣ ≲ ϵ

α

√
d ln(1/ϵ)

k for all S ⊆ [d].
To this end, it is natural to first estimate the auxiliary quantity

q(j) := Ep

[
Z(j)

∣∣∣Z is a good sample
]

for all j ∈ [d],

which is linked with p(j) through the formula p(j) = q(j)−1
1−2λ . Our algorithm therefore first focuses

on robustly estimating q and outputs p̂ = q̂−1
1−2λ . If there were no outliers, we would estimate q(j)

by 1
nk

∑
b∈[n]

∑
l∈[k] Z

b
l (j). In the presence of outliers, our algorithm iteratively deletes the batches

that are likely to be contaminated, and returns the empirical mean of the remaining data. More
precisely, at each iteration, the current collection of remaining batches B′ is processed as follows:

1. Compute the contamination rate √τB′ (defined in equation 4.9) of the collection B′. If√
τB′ ≤ 200, return the empirical mean of the elements in B′.

2. If √τB′ ≥ 200, compute the corruption score εb (defined in equation 4.10) of each batch
b ∈ B′. Select the subset Bo of the nϵ batches of B′ with top corruption scores. Iteratively
delete one batch in Bo: at each step, choose a batch b with probability proportional to εb,
until the sum of all εb in Bo has been halved.

At a high level, contamination rate τB′ quantifies how many adversarial batches remain in the
current collection B′. The corruption score εb quantifies how likely it is for batch b to be an outlier.
Both the contamination rate and the corruption scores can be computed in polynomial time (see
Remark 1). The algorithm therefore terminates in polynomial time, as it removes at least one batch
per iteration. We give its pseudo-code below.

Algorithm 4: Robust Estimation Procedure
input: Corruption level ϵ, Batch collection B
B′ ← B
while contamination rate of B′, √τB′ ≥ 200 do
∀b ∈ B′ compute corruption score εb
Bo ← {ϵ|B| Batches with top corruption scores}
ϵtot =

∑
b∈Bo εb

while
∑
b∈Bo εb ≥ ϵtot/2 do

Delete a batch from Bo, picking batch b with probability proportional to εb

q̂B′ = 1
|B′|

∑
b∈B′

∑k
l=1 Z

b
l and p̂ = q̂−1

1−2λ
output: Estimation p̂

We now give a high level description of our algorithm’s theoretical guarantees. Recall that BG
denotes the set of non-contaminated batches and BA the set of adversarial batches. Throughout
the paper, for any collection of batches B′ ⊆ [d], we will use the following shorthands:

B′
G = B′ ∩BG and B′

A = B′ ∩BA.
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Assume that n ≥ O
(

d
ϵ2 log(e/ϵ)

)
.

• In Lemma 5, we show that each deletion step has a probability at least 3/4 of removing an
adversarial batch. By a direct Chernoff bound, there is only a probability ≤ O(e−ϵ|B]) ≤
O(e−d) of removing more than 2ϵ|BG| clean batches before having removed all the corrupted
batches. In other words, our algorithm keeps at least (1− 2ϵ)n of the good batches with high
probability.

• As proved in equations 4.11 and 4.12, as soon as a subset B′ contains at least (1− 2ϵ)n good
batches, it holds with probability ≥ 1−O(e−d) that for all S ⊆ [d]|q̂B′(S)− q(S)| ≲

(
1 +√τB′

)
ϵ
√

d ln(e/ϵ)
k , (i)

√τB′
G
≤ 200. (ii)

(4.4)

There are two cases. If the algorithm has eliminated all the outliers, then it has kept at least
(1− 2ϵ)n clean batches with probability 1−O(e−d). Then condition (i) √τB′ = √τB′

G
≤ 200

ensures that the algorithm terminates. Otherwise, the algorithm stops before removing all of
the outliers, but in this case, the termination condition guarantees that √τB′ ≤ 200. In both
cases, condition (ii) yields that the associated estimator q̂ := q̂Bout has an estimation error
satisfying sup

S⊆[d]
|q̂(S)− q(S)| ≲ ϵ

√
d ln(e/ϵ)

k with probability ≥ 1−O(e−d).

• Finally, we link the estimation error of q̂ to that of p̂

||p̂− p||1 ≤ 2 max
S∈[d]

|p̂(S)− p(S)| (see Lemma 12)

≤ 2 max
S⊆[d]

∣∣∣∣∑
j∈S

1
1− 2λ

(
q̂j − 1

)
− 1

1− 2λ
(
qj − 1

) ∣∣∣∣
≤ 1

1− 2λ max
S∈[d]

|q̂(S)− q(S)| ≤ 5
α

max
S∈[d]

|q̂(S)− q(S)|

≲
ϵ

α

√
d ln(e/ϵ)

k
with probability ≥ 1−O(e−d),

which yields the estimation guarantee over p̂ and proves Theorem 4.2.

We now move to the formal definitions of the quantities involved in the algorithm and state all the
technical results mentioned.

4.4.2 Technical results

Wlog, assume that 6ϵ
√

d ln(e/ϵ)
k ≤ 1. Otherwise the upper bound of the theorem is clear. For any set

S ⊆ [d] and any observation Zbi , we define the empirical weight of S in Zbi as Zbi (S) :=
∑
j∈S

Zbi (j).

This quantity is an estimator of q(S). For each batch Zb and each collection of batches B′ ⊆ B,
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we aggregate these estimators by building

q̂b(S) :=
1
k

k∑
i=1

Zbi (S) and q̂B′(S) :=
1
|B′|

∑
b∈B′

q̂b(S).

Our goal is to remove batches Zb that do not satisfy some concentration properties verified by clean
batches. To this end, we introduce empirical estimators of the second order moment:

ĈovB
′

S,S′ (b) :=
[
q̂b(S)− q̂B′(S)

][
q̂b(S

′)− q̂B′(S′)

]
(4.5)

ĈovS,S′

(
B′
)

:=
1
|B′|

∑
b∈B′

ĈovB
′

S,S′ (b) . (4.6)

In Appendix 4.A.4, we give the expression of CovS,S′ (q) s.t.

CovS,S′ (q) = E

[
ĈovS,S′

(
B′
)]

.

We are now ready to define the essential concentration properties satisfied by the clean batches
with high probability (see Lemma 1).

Definition 4.2 (Nice properties of good batches). 1. For all S ⊆ [d], all sub-collections B′
G ⊆ BG

of good batches of size
∣∣B′

G

∣∣ ≥ (1− 2ϵ) |BG|,

∣∣∣q̂B′
G
(S)− q(S)

∣∣∣ ≤ 6ϵ

√
d ln(e/ϵ)

k
, (4.7)

∣∣∣∣ĈovS,S′

(
B′
G

)
−CovS,S′(q̂B′

G
)

∣∣∣∣ ≤ 250dϵ ln
(
e
ϵ

)
k

. (4.8)

2. For all S,S′ ⊆ [d], for any sub collection of good batches B′′
G s.t. |B′′

G| ≤ ϵ|BG|,∑
b∈B′′

G

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]
≤ 33ϵd|BG| ln(e/ϵ)

k
.

Lemma 1 (Nice properties of good batches). If |BG| ≥ 3d
ϵ2 ln(e/ϵ) , the nice properties of the good

batches hold with probability 1− 10e−d.

The proof is very similar to that of Lemma 3 in [138], and can be found in Appendix 4.A.2 where
we clarify which technical elements change.

In the case where S′ = S, we use the shorthands ĈovS,S(B′) = V̂S(B′) and CovS,S(B′) = VS(B′).
The following Lemma states that the quality of estimator q̂B′ is controlled by the concentration of∣∣∣V̂S(B′)−VS(q̂)

∣∣∣.
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Lemma 2 (Variance gap to estimation error). If conditions 1 and 2 hold and maxS⊆[d] |q̂B′(S)−
q(S)| ≤ 11, then for any subset B′ s.t. |B′

G| ≥ (1− 2ϵ)|BG| and for any S ⊂ [d], we have:

|q̂B′(S)− q(S)| ≤ 28ϵ

√
d ln(6e/ϵ)

k
+ 2

√
ϵ
∣∣∣V̂S(B′)−VS(q̂)

∣∣∣.
This Lemma is proved in Appendix 4.A.3. Together with equation (4.8), this Lemma ensures that
removing enough outliers yields an estimator q̂B′ with estimation guarantee sup

S⊆[d]
|q̂B′(S)− q(S)| ≲

ϵ
√

d ln(1/ϵ)
k .

The adversarial batch deletion is achieved by identifying the batches Zb for which ĈovB
′

S,S′ (b)
(defined in equation (4.5)) is at odds with Definition 4.2 for some S,S′ ⊂ [d]. Searching through all
possible S,S′ ⊆ [d] would yield an exponential-time algorithm. A way around this is to introduce
a semi-definite program that can be approximated in polynomial time. To this end, we prove the
next Lemma, stating that the quantities ĈovS,S′ (q) and CovS,S′ (q) can be computed as scalar
products of matrices.

Lemma 3 (Matrix expression). Denote by 1S the indicator vector of the elements in S. For each
vector q, there exists a matrix C(q̂) s.t. for any S,S′ ⊆ [d],

CovS,S′ (q̂) =
〈
1S1

T
S′ , C(q̂)

〉
.

Ĉov
B′

S,S′ (b) =
〈
1S1

T
S′ , Ĉb,B′

〉
and ĈovS,S′

(
B′
)
=
〈
1S1

T
S′ , Ĉ(B′)

〉
,

with Ĉ(B′) =
∑
b∈B′ Ĉb,B′.

The proof of the Lemma and the precise expressions of the matrices can be found in Appendix
4.A.4. To define the semi-definite program, we introduce the following space of Gram matrices:

G :=

{
M ∈ Rd×d,Mij = ⟨u(i), v(j)⟩

∣∣∣∣ (u(i))di=1, (v(i))dj=1unit vectors in (Rd, ∥ · ∥2)
}

.

For a subset B′, let us define DB′ = Ĉ(B′)−C(q̂B′), and define M∗
B′ as any matrix s.t.

⟨M∗
B′ ,DB′⟩ ≥ max

M∈G
⟨M ,DB′⟩ − cϵd ln(e/ϵ)

k
,

for some small enough absolute constant c > 0.

Remark 1. Note that the quantity max
M∈G
⟨M ,DB′⟩ is an SDP. For all desired precision δ > 0, it is

possible to find the solution of this program up to an additive constant δ in polynomial time in all
the parameters of the program and in log(1/δ). Thus, M∗

B′ can be computed in polynomial time,
as well as the contamination rate and the corruption score, defined below.
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Definition of the contamination rate and corruption scores. When q̂(S)≫ λ|S| for some
S ⊆ [d], the contamination rate and corruption scores have special definitions. Formally, let
A =

{
j ∈ [d]

∣∣∣ q̂B′(j) ≥ λ
}

and S∗ = maxS⊆[d]

∣∣q̂B′(S)− λ|S|
∣∣. We have S∗ = A or S∗ = [d] \A,

which can be computed in polynomial time. In the special case where
∣∣q̂B′(S∗)− λ|S∗|

∣∣ ≥ 11, the
contamination rate √τB′ of the collection B′ is defined as τB′ = ∞ and the corruption score of a
batch is defined as εb(B′) =

∣∣q̂b(S∗)− λ|S∗|
∣∣.

Otherwise, the contamination rate √τB′ of the collection B′ is defined through the quantity satis-
fying

⟨M∗
B′ ,DB′⟩ = τB′

ϵd ln(e/ϵ)
k

. (4.9)

Define the corruption score of a batch as

εb(B
′) = ⟨M∗

B′ , Ĉb,B′⟩. (4.10)

The following Lemma guarantees that the quantity ⟨M∗
B′ ,DB′⟩ is a good approximation of max

S,S′⊆[d]

∣∣∣⟨1S1TS′ ,DB′⟩
∣∣∣,

with the advantage that it can be computed in polynomial time.

Lemma 4 (Grothendieck’s inequality corollary). Assume d ≥ 3. For all symmetric matrix A ∈
Rd×d, it holds

max
S,S′⊆[d]

∣∣∣⟨1S1TS′ ,A⟩
∣∣∣ ≤ max

M∈G
⟨M ,A⟩ ≤ 8 max

S,S′⊆[d]

∣∣∣⟨1S1TS′ ,A⟩
∣∣∣.

The proof of the Lemma can be found in Appendix 4.A.5. Together with Lemma 2, this Lemma
implies that if conditions 1 and 2 hold, then for any subset B′ s.t. |B′

G| ≥ (1− 2ϵ)|BG| and for any
S ⊂ [d], we have:

|q̂B′(S)− q(S)| ≤
(
30 + 2√τB′

)
ϵ

√
d ln(e/ϵ)

k
. (4.11)

This Lemma implies that if equation (4.8) holds, then, for any B′ s.t. |B′
G| ≥ (1− 2ϵ)|BG|√

τB′
G
≤ 200. (4.12)

Lemma 5 (Score good vs. adversarial batches). If √τB′ ≥ 200 and condition 1-2 hold, then for
any collection of batches B′ s.t. |B′ ∩BG| ≥ (1− 2ϵ)|BG|, for any sub-collection of good batches
B

′′
G ⊆ B, |B′′

G| ≤ ϵn, we have: ∑
b∈B′′

G

εb(B
′) <

1
8
∑
b∈B′

A

εb(B
′).

This Lemma is proved in Appendix 4.A.6, where we argue that this Lemma ensures that each batch
deletion has a probability at least 3

4 of removing an adversarial batch.
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4.5 Discussion and future work
We studied the problem of estimating discrete distributions in total variation, with both privacy
and robustness constraints. We obtained an information theoretic lower bound of ϵ

√
d/α2k +√

d2/α2kn. We proposed an algorithm running in polynomial time and returning an estimated
parameter such that the estimation error is within

√
log(1/ϵ) of the information theoretic lower

bound. It would be interesting to explore if polynomial algorithms could achieve the optimal bound
without this extra factor. We do not consider the adaptation to unknown contamination ϵ and leave
it for future work. It would also be interesting to explore what happens if the contamination occurs
before the privacy rather than after, like in [176]. Indeed, they do not consider batched data, and
it would be interesting to check if their result holds in that case. Also, the upper bound holds only
if n ≥ O(d). Exploring the regime n ≤ d would be an interesting research direction, which has not
been done to our knowledge, even in the case of the sole robustness constraint. Finally, we could
study the combination of the robustness and privacy constraints in other settings, such as density
estimation.
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Appendix

4.A Proofs

4.A.1 Proof of Lemma 6, Law of the sum

Lemma 6 (Law of the sum). For any subset S ⊆ [d], we have:

∑
j∈S

Z(j) ∼
|S|−1∑
j=1

bj + bS ,

with the (bj)
|S|−1
j=1 independent Bernoulli variables s.t. P(bj = 1) = λ and bS a Bernoulli indepen-

dent of the others s.t.
P(bS = 1) = λ+ (1− 2λ)pS .

For any t ∈ [d],

P

∑
j∈S

Z(j) = t

 =

(
|S| − 1
t− 1

)
(1− λ)|S|−t+1 λt−1p(S) +

(
1− p(S)

)(|S|
t

)
(1− λ)|S|−t λt

+

(
|S| − 1
t

)
(1− λ)|S|−t−1 λt+1p(S)

=

(
|S| − 1
t− 1

)
(1− λ)|S|−t λt−1

[
(1− λ)p(S) + λ

(
1− p(S)

)]
+

(
|S| − 1
t

)
(1− λ)|S|−t−1 λt

[
(1− λ)

(
1− p(S)

)
+ λp(S)

]
=

(
|S| − 1
t− 1

)
(1− λ)|S|−t λt−1 [(1− 2λ)p(S) + λ

]
+

(
|S| − 1
t

)
(1− λ)|S|−t−1 λt

[
1− λ− (1− 2λ)p(S)

]
.

Note that we have:

q(S) = (1− 2λ) p(S) + λ|S|. (4.13)

4.A.2 Proof of Lemma 1, Essential properties of good batches

We start with the following intermediary Lemma.

Lemma 7. If
∣∣∣BG∣∣∣ ≥ 2d

ϵ2 ln(e/ϵ) , then ∀S ⊆ [d] and ∀B′
G ⊆ BG of size

∣∣B′
G

∣∣ ≥ (1− 2ϵ)
∣∣∣BG∣∣∣, with

probability at least 1− 4e−d,

∣∣∣q̂B′
G
(S)− q(S)

∣∣∣ ≤ 6ϵ

√
d ln(e/ϵ)

k
.
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Proof. : The proof of this lemma is exactly part of that of lemma 11 in [138] with different constants,
we repeat it for completeness. From Hoeffding’s inequality, for any S ⊆ [d],

P

∣∣∣BG∣∣∣ ∣∣q̂BG(S)− q(S)∣∣ ≥
∣∣∣BG∣∣∣
√

2
ϵ

√
d ln(e/ϵ)

k

 ≤ 2e−ϵ2
∣∣∣BG∣∣∣ ln(e/ϵ) ≤ 2e−2d.

Similarly, for a fixed sub-collection UG ⊆ BG of size 1 ≤
∣∣∣UG∣∣∣ ≤ 2ϵ

∣∣∣BG∣∣∣,
P

∣∣∣UG∣∣∣ · ∣∣∣∣q̂UG(S)− q(S)∣∣∣∣ ≥ 2ϵ
∣∣∣BG∣∣∣

√
d ln(e/ϵ)

k

 ≤ 2e−8 ϵ
2|BG|2
|UG| ln(e/ϵ) ≤ 2e−4ϵ|BG| ln(e/ϵ). (4.14)

We now bound the number of subsets of cardinality smaller than 2ϵ
∣∣∣BG∣∣∣:

⌊2ϵ|BG|⌋∑
j=1

(
|BG|
j

)
≤ 2ϵ

∣∣∣BG∣∣∣
(
|BG|⌊

2ϵ|BG|
⌋) ≤ 2ϵ

∣∣∣BG∣∣∣
 e

∣∣∣BG∣∣∣
2ϵ
∣∣∣BG∣∣∣


2ϵ|BG|

≤ e2ϵ|BG| ln(e/ϵ)+ln(2ϵ|BG|) < e3ϵ|BG| ln(e/ϵ). (4.15)

Thus, by union bound,

P

∃ ∣∣∣UG∣∣∣ ≤ 2ϵ
∣∣∣BG∣∣∣ :

∣∣∣UG∣∣∣∣∣∣∣q̂UG(S)− q(S)∣∣∣∣ ≥ 2ϵ
∣∣∣BG∣∣∣

√
d ln(e/2ϵ)

k

 ≤ 2e−ϵ|BG| ln(e/ϵ) ≤ 2e−2d.

For any sub-collection B′
G ⊆ BG with

∣∣B′
G

∣∣ ≥ (1− 2ϵ)
∣∣∣BG∣∣∣,∣∣∣∣∣∣

∑
b∈B′

G

[
q̂b(S)− q(S)

]∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑
b∈BG

[
q̂b(S)− q(S)

]
−

∑
b∈BG\B′

G

[
q̂b(S)− q(S)

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
b∈BG

[
q̂b(S)− q(S)

]∣∣∣∣∣∣+
∣∣∣∣∣∣

∑
b∈BG\B′

G

[
q̂b(S)− q(S)

]∣∣∣∣∣∣
≤
∣∣∣BG∣∣∣× ∣∣∣∣q̂BG(S)− q(S)∣∣∣∣+ max

UG s.t.∣∣∣UG∣∣∣≤2ϵ
∣∣∣BG∣∣∣

∣∣∣UG∣∣∣× ∣∣∣∣q̂UG(S)− q(S)∣∣∣∣

≤
(

2 + 1√
2

)
ϵ
∣∣∣BG∣∣∣

√
d ln(e/ϵ)

k
.

where the last inequality holds with probability at least 1− 4e−2d. We conclude by using a union

bound over the 2d possible subsets and by noting that (2 + 1√
2 )

∣∣∣BG∣∣∣
|B′
G| ≤ 6.
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We now move to the following result.

Lemma 8. If
∣∣∣BG∣∣∣ ≥ 3d

ϵ2 ln(e/ϵ) , then ∀S,S′ ⊆ [d] and ∀B′
G ⊆ BG of size

∣∣B′
G

∣∣ ≥ (1− 2ϵ)
∣∣∣BG∣∣∣, with

probability at least 1− 2e−d,∣∣∣∣∣∣∣
1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]
−CovS,S′(q)

∣∣∣∣∣∣∣ ≤
140dϵ ln

(
e
ϵ

)
k

.

Proof. : Let Ub(S,S′) =

(
q̂b(S)−q(S)

d

)(
q̂b(S

′)−q(S′)
d

)
− CovS,S′ (q)

d2 . For b ∈ BG, q̂b(S)−q(S)d ∼ subG(1/4dk),
therefore(
q̂b(S)− q(S)

d

)(
q̂b(S

′)− q(S′)

d

)
−E

( q̂b(S)− q(S)
d

)(
q̂b(S

′)− q(S′)

d

) = Yb ∼ subE
( 16

4kd

)
.

Here subE is sub exponential distribution. For any S,S′ ⊆ [d], Bernstein’s inequality gives:

P

[∣∣∣∣∣ ∑
b∈BG

Ub(S,S′)

∣∣∣∣∣ ≥ 6ϵ|BG|
ln(e/ϵ)
kd

]
≤ 2e−ϵ2

∣∣∣BG∣∣∣ ln2(e/ϵ) ≤ 2e−3d.

Next, for a fixed sub-collection B
′′
G ⊆ BG of size 1 ≤

∣∣∣B′′
G

∣∣∣ ≤ ϵ∣∣∣BG∣∣∣,
Pr


∣∣∣∣∣∣
∑
b∈B′′

G

Ub(S,S′)

∣∣∣∣∣∣ ≥ 64ϵ
∣∣∣BG∣∣∣ ln(e/ϵ)

n

 ≤ 2e− 64ϵ|BG| ln(e/ϵ)
2×2×4/n

≤ 2e−4ϵ|BG| ln(e/ϵ).

The same steps as the previous lemma terminate the proof, except that there are now 22d sets
S,S′ ⊆ [d].

By Lemma 7 and 8, if
∣∣∣BG∣∣∣ ≥ 2d

ϵ2 ln(e/ϵ) , then ∀S ⊆ [d] and ∀B′
G ⊆ BG of size

∣∣B′
G

∣∣ ≥ (1− 2ϵ)
∣∣∣BG∣∣∣,

with probability at least 1− 8e−d:

∣∣∣q̂B′
G
(S)− q(S)

∣∣∣ ≤ 6ϵ

√
d ln(e/ϵ)

k

and∣∣∣∣∣∣∣
1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]
−CovS,S′(q)

∣∣∣∣∣∣∣ ≤
140dϵ ln

(
6e
ϵ

)
k

.
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Additionally Lemma 11, this implies:

∣∣∣CovS,S′(q)−CovS,S′(q̂B′
G
)
∣∣∣ ≤ 66ϵ

√
d ln(e/ϵ)

k
.

Moreover:
1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]
=

1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q̂B′(S)

][
q̂b(S

′)− q̂B′(S′)

]

+

[
q(S)− q̂B′(S)

][
q(S′)− q̂B′(S′)

]
+

1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q̂B′(S)

][
q(S′)− q̂B′(S′)

]

+
1
|B′

G|
∑
b∈B′

G

[
q(S)− q̂B′(S)

][
q̂b(S

′)− q̂B′(S′)

]

=
1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q̂B′(S)

][
q̂b(S

′)− q̂B′(S′)

]

+

[
q(S)− q̂B′(S)

][
q(S′)− q̂B′(S′)

]
.

Therefore: ∣∣∣∣ĈovS,S′

(
B′
G

)
−CovS,S′(q̂B′

G
)

∣∣∣∣ ≤ 242dϵ ln
(
e
ϵ

)
k

.

Note that we also have:

∣∣∣∣ĈovS,S′

(
B′
G

)
−CovS,S′(q)

∣∣∣∣ ≤ 176dϵ ln
(
e
ϵ

)
k

. (4.16)

The following Lemma gives condition 2.

Lemma 9. If
∣∣∣BG∣∣∣ ≥ 3d

ϵ2 ln(e/ϵ) , then ∀S,S′ ⊆ [d] and ∀B′′
G ⊆ BG of size

∣∣∣B′′
G

∣∣∣ ≤ ϵ
∣∣∣BG∣∣∣, with

probability at least 1− 2e−d,∣∣∣∣∣∣∣∣
∑
b∈B′′

G

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]∣∣∣∣∣∣∣∣ ≤
33ϵd

∣∣∣BG∣∣∣ ln(e/ϵ)

k
.

Proof. : For any S,S′ ⊆ [d] and any B′
G ⊆ BG Bernstein’s inequality gives:

P

[∣∣∣∣∣ ∑
b∈B′′

G

Ub(S,S′)

∣∣∣∣∣ ≥ 32ϵ
∣∣∣BG∣∣∣ ln(e/ϵ)

kd

]
≤ 2e−4ϵ

∣∣∣BG∣∣∣ ln(e/ϵ)
.
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We have : ∣∣∣∣∣∣∣∣
∑
b∈B′′

G

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
∑
b∈B′′

G

d2Ub(S,S′) + |B′′
G|CovS,S′(q)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣
∑
b∈B′′

G

d2Ub(S,S′)

∣∣∣∣∣∣∣∣+ ϵ
d
∣∣∣BG∣∣∣
k

.

A union bound over all the possible B′′
G and the 22d sets S,S′ terminates the proof.

Combining the three Lemmas of the section gives Lemma 1.

4.A.3 Proof of Lemma 2, Variance gap to estimation error

Proof : By condition 1 and Cauchy-Schwartz:

∣∣∣∣q̂B′(S)− q(S)
∣∣∣∣ ≤ 1
|B′|

∣∣∣∣∣∣
∑
b∈B′

G

q̂b(S)− q(S)

∣∣∣∣∣∣+ 1
|B′|

∣∣∣∣∣∣
∑
b∈B′

A

q̂b(S)− q(S)

∣∣∣∣∣∣
≤ 6ϵ

√
d ln(e/ϵ)

k
+

√
|B′

A|
|B′|

√√√√ 1
|B′|

∑
b∈B′

A

[
q̂b(S)− q(S)

]2
. (4.17)

We can decompose the second term:

1
|B′|

∑
b∈B′

A

[
q̂b(S)− q(S)

]2
=

1
|B′|

∑
b∈B′

[
q̂b(S)− q(S)

]2
− 1
|B′|

∑
b∈B′

G

[
q̂b(S)− q(S)

]2
.

By Lemma 8, ∣∣∣∣∣ 1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q(S)

]2
−VS(q)

∣∣∣∣∣ ≤ 140ϵd ln(e/ϵ)
k

.

Thus,

1
|B′|

∑
b∈B′

G

[
q̂b(S)− q(S)

]2
=
|B′

G|
|B′|

1
|B′

G|
∑
b∈B′

G

[
q̂b(S)− q(S)

]2

≥ (1− 2ϵ)
(

VS(q)− 140ϵd ln(e/ϵ)
k

)

≥ VS(q)− 2ϵVS(q)− 140ϵd ln(e/ϵ)
k
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≥ VS(q̂B′)− 15

∣∣∣∣q̂B′(S)− q(S)
∣∣∣∣

k
− 142ϵd ln(e/ϵ)

k
,

where the last inequality comes from Lemma 11 and VS(q) ≤ d/k. Now, we have

∣∣∣∣q̂B′(S)− q̂B′
G
(S)

∣∣∣∣ ≤
∣∣∣∣∣∣
(

1
|B′

G|
− 1
|B′|

) ∑
b∈B′

G

q̂b(S)

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1
|B′|

∑
b∈B′\B′

G

q̂b(S)

∣∣∣∣∣∣
≤ 2dϵ

1− ϵ ≤ 3dϵ.

Thus, ∣∣∣∣q̂B′(S)− q(S)
∣∣∣∣

k
≤

∣∣∣∣q̂B′
G
(S)− q(S)

∣∣∣∣
k

+

∣∣∣∣q̂B′(S)− q̂B′
G
(S)

∣∣∣∣
k

≤ 6ϵ
k

√
d ln(e/ϵ)

k
+

3dϵ
k
≤ 3dϵ

k
ln(e/ϵ).

This implies
1
|B′|

∑
b∈B′

G

[
q̂b(S)− q(S)

]2
≥ VS(q̂B′)− 187ϵd ln(e/ϵ)

k
. (4.18)

On the other hand,

1
|B′|

∑
b∈B′

[
q̂b(S)− q(S)

]2
=

1
|B′|

∑
b∈B′

[
q̂b(S)− q̂B′(S)

]2

+

[
q(S)− q̂B′(S)

]2
+ 2

[
q(S)− q̂B′(S)

] 1
|B′|

∑
b∈B′

[
q̂b(S)− q̂B′(S)

]

=
1
|B′|

∑
b∈B′

[
q̂b(S)− q̂B′(S)

]2
+

[
q(S)− q̂B′(S)

]2
.

Combining this equation with equations 4.18 and 4.17 gives

∣∣∣∣q̂B′(S)− q(S)
∣∣∣∣ ≤ 1
|B′|

∣∣∣∣∣∣
∑
b∈B′

G

q̂b(S)− q(S)

∣∣∣∣∣∣+ 1
|B′|

∣∣∣∣∣∣
∑
b∈B′

A

q̂b(S)− q(S)

∣∣∣∣∣∣
≤ 6ϵ

√
d ln(e/ϵ)

k
+
√

2ϵ
√

V̂S(B′)−VS(q̂B′) + 187ϵd ln(e/ϵ)
k

+

[
q(S)− q̂B′(S)

]2

≤ 26ϵ

√
d ln(e/ϵ)

k
+

√
2ϵ
∣∣∣V̂S(B′)−VS(q̂B′)

∣∣∣+√2ϵ
∣∣∣∣q̂B′(S)− q(S)

∣∣∣∣.
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Noting that 2ϵ ≤ 1/8 terminates the proof:

∣∣∣∣q̂B′(S)− q(S)
∣∣∣∣ ≤ 30ϵ

√
d ln(e/ϵ)

k
+ 2

√
ϵ
∣∣∣V̂S(B′)−VS(q̂B′)

∣∣∣.
□

4.A.4 Proof of Lemma 3, Matrix expression

For each batch b ∈ B, define matrix CEVb,B′ as:

Ĉb,B′(j, l) =
[
q̂b(j)− q̂B′(j)

][
q̂b(l)− q̂B′(l)

]
, ∀(j, l) ∈ [d]2. (4.19)

For each collection of batches B′ define

Ĉ(B′) =
1
|B′|

∑
b∈B′

Ĉb.

For a set S ⊆ [d], define 1S as the indicator vector of the elements in S. For any S,S′ ⊆ [d]〈
Ĉ(B′),1S1TS′

〉
=

1
|B′|

∑
b∈B′

∑
j∈S

∑
l∈S′

[
q̂b(j)− q̂B′(j)

][
q̂b(l)− q̂B′(l)

]

=
1
|B′|

∑
b∈B′

∑
j∈S

q̂b(j)−
∑
j∈S

q̂B′(j)

∑
l∈S′

q̂b(l)−
∑
l∈S′

q̂B′(l)


= ĈovS,S′

(
B′
)

.

We can compute

E

∑
j∈S

Z(j)

∣∣∣∣∣X
 = λ|S|1X ̸∈S +

(
λ(|S| − 1) + 1− λ

)
1X∈S

= λ|S|+ (1− 2λ)1X∈S .

For a set S, let us define YS =
( ∑
j∈S

Z(j)
)
− q(S) and ∆S = λ|S| − q(S). For any sets S,S′ ⊆ [d]

s.t. S ∩ S′ = ∅, we have:

E [YSYS′ ] = E

[
E

[
YS
∣∣∣X]E

[
YS′

∣∣∣X]]
= E

[(
∆S + (1− 2λ)1X∈S

) (
∆S′ + (1− 2λ)1X∈S′

)]
= ∆S′ ∆S + ∆S(1− 2λ)p(S′) + ∆S′(1− 2λ)p(S) since S ∩ S′ = ∅
= −∆S′ ∆S since by (4.13) we have (1− 2λ)p(S) = −∆S .
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On the other hand, using the notation from Lemma 6, we have:

E
[
Y 2
S

]
= E

[( |S|−1∑
j=1

(bj −Ebj) + bS −EbS
)2]

=
|S|−1∑
j=1

V[bj ] + V[bS ]

= (|S| − 1)λ(1− λ) +
(
λ+ (1− 2λ)p(S)

) (
1− λ− (1− 2λ)p(S)

)
= (|S| − 1)λ(1− λ) + (λ− ∆S) (1− λ+ ∆S)

= −∆2
S + |S|λ(1− λ)− (1− 2λ)∆S .

For any S,S′ ⊆ [d], we thus have:

E [YSYS′ ] = E

[(
Y(S∩S′) + Y(S\S′)

) (
Y(S∩S′) + Y(S′\S)

)]
= E

[
Y 2
(S∩S′)

]
+ E

[
Y(S∩S′)Y(S\S′)

]
+ E

[
Y(S∩S′)Y(S′\S)

]
+ E

[
Y(S\S′)Y(S′\S)

]
= −

(
∆(S∩S′) + ∆(S\S′)

) (
∆(S∩S′) + ∆(S′\S)

)
+ |S ∩ S′|λ(1− λ)− (1− 2λ)∆(S∩S′)

= −∆S∆S′ + |S ∩ S′|λ(1− λ)− (1− 2λ)∆(S∩S′).

For a vector q, define

kC(q) = − (λ1− q) (λ1− q)T + λ(1− λ)Id − (1− 2λ)Diag(λ1− q). (4.20)

For any two sets S,S′ ⊆ [d], we have: E [YSYS′ ] = 1TSkC(q)1S′ , so that E
[
ĈovS,S′(B′

G)
]
=

1TSC(q)1S′ . We now define:
CovS,S′(B′) := 1TSC(q̂B′)1S′ . (4.21)

4.A.5 Proof of Lemma 4, Grothendieck’s inequality corollary

Proof of Lemma 4. • For the first inequality, fix any x, y ∈ {0, 1}d and three orthonormal
vectors e0, e1, e2 ∈ Rd. Define the following vectors:

∀j ∈ {1, . . . , d} : u(j) =

e0 if xj = 1,
e1 otherwise,

and v(j) =

e0 if yj = 1,
e2 otherwise.

Then the matrix M =
[
⟨u(i), v(j)⟩

]
ij

belongs to G and we have by construction M = xyT

which proves the first inequality.

• For the second inequality, we have by Grothendieck’s inequality

max
M∈G
⟨M ,A⟩ ≤ 2 max

x,y∈{±1}d
⟨xyT ,A⟩.

For all a ∈ R, define a+ = a ∨ 0 and a− = (−a) ∨ 0 and for all vector x ∈ Rd, define
x+ = (x+j )j and x− = (x−

j )j . Note that if x ∈ {±1}d, then x+,x− ∈ {0, 1}d. We therefore
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have:

max
x,y∈{±1}d

⟨xyT ,A⟩ = max
x,y∈{±1}d

∣∣∣⟨x+y+T ,A⟩ − ⟨x−y+T ,A⟩ − ⟨x+y−T ,A⟩+ ⟨x−y−T ,A⟩
∣∣∣

≤ 4 max
a,b∈{0,1}d

∣∣∣⟨abT ,A⟩
∣∣∣,

which proves the second inequality.

4.A.6 Proof of Lemma 5, Score good vs. adversarial batches

We first note that the Lemma implies the desired property for the batches in Bo, namely that each
batch deletion has a probability at least 3

4 of removing an adversarial batch. Indeed, we have:∑
b∈Bo

εb =
∑
b∈BoG

εb +
∑
b∈BoA

εb.

If we had ∑
b∈BoA

εb < 7 ∑
b∈BoG

εb, this would imply:

∑
b∈Bo

εb < 8
∑
b∈BoG

εb <
∑
b∈B′

A

εb,

where the last inequality comes from the Lemma. However this is in contradiction with the definition
of Bo, which is the sub-collection of ϵ|B| batches with top εb scores, since |B′

A| ≤ ϵ|B|. We
therefore have that ∑

b∈BoA
εb ≥ 7 ∑

b∈BoG
εb hence ∑

b∈BoG
εb ≤ 1

8
∑
b∈Bo

εb. Denote by Bo(t) the current

set obtained from Bo after having removed t batches (and before ∑
b∈Bo

εb has been halved). We

keep deleting batches from Bo until ∑
b∈Bo(t)

εb ≤ 1
2
∑
b∈Bo

εb. At each step, we therefore have that∑
b∈BoG(t)

εb ≤ 1
4

∑
b∈Bo(t)

εb hence the probability of removing a good batch from Bo(t) is always less

than 3
4 .

Subcase 1 We first prove the Lemma in the case where maxS⊆[d]

∣∣q̂B′(S)− λ|S|
∣∣ ≥ 11.

We have:

|q̂B′(S)− λ|S|| ≤ 1
|B′|

∣∣∣∣∣∣
∑
b∈B′

G

q̂b(S)− λ|S|

∣∣∣∣∣∣+ 1
|B′|

∣∣∣∣∣∣
∑
b∈B′

A

q̂b(S)− λ|S|

∣∣∣∣∣∣
≤ |B

′
G|
|B′|

1
|B′

G|

∣∣∣∣∣∣
∑
b∈B′

G

q̂b(S)− q(S)

∣∣∣∣∣∣+ |B
′
G|∣∣∣BG∣∣∣
∣∣λ|S| − q(S)∣∣+ 1

|B′|

∣∣∣∣∣∣
∑
b∈B′

A

q̂b(S)− λ|S|

∣∣∣∣∣∣
≤ 6ϵ

√
d ln(e/ϵ)

k
+ 1 + 1

|B′|

∣∣∣∣∣∣
∑
b∈B′

A

q̂b(S)− λ|S|

∣∣∣∣∣∣ by equation (4.7).
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Let S∗ = arg maxS⊆[d] |q̂B′(S)− λ|S||. We have:∣∣∣∣∣∣
∑
b∈B′

A

q̂b(S
∗)− λ|S∗|

∣∣∣∣∣∣ ≥ 9(1− 2ϵ)
∣∣∣BG∣∣∣.

On the other hand, by equation 4.14, we have for any B′′
G s.t. |B′′

G| ≤ ϵ
∣∣∣BG∣∣∣:∣∣∣∣∣∣

∑
b∈B′′

G

q̂b(S
∗)− λ|S∗|

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑
b∈B′′

G

q̂b(S
∗)− q(S)

∣∣∣∣∣∣+ |B′′
G|

≤
(
ϵ+ 2ϵ

√
d ln(e/ϵ)

k

)∣∣∣BG∣∣∣
≤
(
1 + ϵ

)∣∣∣BG∣∣∣.
Thus we have: ∣∣∣∑b∈B′

A
q̂b(S

∗)− λ|S∗|
∣∣∣∣∣∣∣∑b∈B′′

G
q̂b(S∗)− λ|S∗|

∣∣∣∣ ≥
9(1− 2ϵ)

1 + ϵ
> 8.

Subcase 2 In the case where maxS⊆[d]

∣∣q̂B′(S)− λ|S|
∣∣ ≤ 11, the proof relies on the following

intermediary Lemma 10.

Lemma 10. If conditions 1 and 2 hold, then, for any B′ ⊂ [B], for any two sets S,S′:

(
τB′ − 11√τB′ − 1313

)ϵd ln(e/ϵ)
k

≤ 1
|B′|

∑
b∈B′

A

⟨M∗, Ĉb,B′⟩.

Proof. : In this proof only, we use the shorthand:

γ :=
ϵd ln(e/ϵ)

k
.

We have 〈
M∗,DB′

〉
=
〈
M∗, Ĉ(B′)−C(q)

〉
+

〈
M∗, C(q)−C(q̂B′)

〉
.

We analyse separately each term. For any S′,S, according to Lemmas 11 and equation 4.11, we
have: ∣∣∣∣CovS,S′(q̂B′)−CovS,S′(q)

∣∣∣∣ ≤ 11
k

max
S′′

∣∣∣q̂B′(S
′′
)− q(S′′

)
∣∣∣

≤
330 + 22√τB′

k
ϵ

√
d ln(e/ϵ)

k
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≤ (330 + 22√τB′)γ

√
1

d ln(e/ϵ)k

≤ (96 + 7√τB′)γ.

Where the last line come from d ≥ 3, ϵ ≤ 1
20 . Thus, by Lemma 4, we have:

arg max
M∈G

⟨M , C(q)−C(q̂B′)⟩ ≤ 8 max
S,S′

∣∣∣∣CovS,S′(q̂B′)−CovS,S′(q)

∣∣∣∣
≤ 88

k

(
30 + 2

√
τ ′
B

)
ϵ

√
d ln(e/ϵ)

k

≤ (763 + 51√τB′)γ. (4.22)

On the other hand,

Ĉ(B′)−C(q) =
1
|B′|

∑
b∈B′

Ĉ(b,B′)−C(q)

=
1
|B′|

∑
b∈B′

G

Ĉ(b,B′)−C(q) +
1
|B′|

∑
b∈B′

A

Ĉ(b,B′)−C(q).

From Lemma 4 and 8, we have:∣∣∣∣∣
〈
M∗, 1

|B′
G|

∑
b∈B′

G

Ĉ(b,B′)−C(q)

〉∣∣∣∣∣ ≤
∣∣∣∣∣
〈
M∗, 1

|B′
G|

∑
b∈B′

G

Ĉ(b,B′
G)− Ĉ(b,B′)

〉∣∣∣∣∣
+

∣∣∣∣∣
〈
M∗, 1

|B′
G|

∑
b∈B′

G

Ĉ(b,B′
G)−C(q)

〉∣∣∣∣∣.

We start by bounding the first term A =

∣∣∣∣∣
〈
M∗, 1

|B′
G|
∑
b∈B′

G
Ĉ(b,B′

G)− Ĉ(b,B′)

〉∣∣∣∣∣. By Lemma 4:

A ≤ 8
|B′

G|
max
S,S′∈[d]

∣∣∣∣∣ ∑
b∈B′

G

[
q̂b(S)− q̂B′(S)

] [
q̂b(S

′)− q̂B′(S′)
]
−
[
q̂b(S)− q̂B′

G
(S)

] [
q̂b(S

′)− q̂B′
G
(S′)

] ∣∣∣∣∣
=

8
|B′

G|
max
S,S′∈[d]

∣∣∣∣∣ [q̂B′
G
(S)− q̂B′(S)

] [
q̂B′

G
(S′)− q̂B′(S′)

] ∣∣∣∣∣.
By equation 4.4 and condition 1, for any S ⊆ [d], we have:∣∣∣q̂B′

G
(S)− q̂B′(S)

∣∣∣ ≤ ∣∣∣q̂B′
G
(S)− q(S)

∣∣∣+ ∣∣q(S)− q̂B′(S)
∣∣

≤
(
36 + 2√τB′

)
ϵ

√
d ln(e/ϵ)

k
.
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Thus,

A ≤ 8
(
36 + 2√τB′

)2
ϵγ.

By equation 4.16 and Lemma 4, we have:∣∣∣∣∣
〈
M∗, 1

|B′
G|

∑
b∈B′

G

Ĉ(b,B′
G)−C(q)

〉∣∣∣∣∣ ≤ 1408γ.

Thus: ∣∣∣∣∣
〈
M∗, 1

|B′|
∑
b∈B′

G

Ĉ(b,B′)−C(q)

〉∣∣∣∣∣ = |B′
G|
|B′|

∣∣∣∣∣
〈
M∗, 1

|B′
G|

∑
b∈B′

G

Ĉ(b,B′)−C(q)

〉∣∣∣∣∣
≤ 1408γ + 8

(
36 + 2√τB′

)2
ϵγ.

Finally, for any q, we have:

⟨M∗,C(q)⟩ ≤ 8 max
S,S′

CovS,S′(q) ≤ 8d
k

.

This gives:

∣∣∣∣〈M∗, Ĉ(B′)−C(q)
〉∣∣∣∣ ≤

∣∣∣∣∣∣
〈
M∗, 1

|B′|
∑
b∈B′

G

Ĉ(b,B′)−C(q)

〉∣∣∣∣∣∣+
∣∣∣∣∣∣
〈
M∗, 1

|B′|
∑
b∈B′

A

Ĉ(b,B′)

〉∣∣∣∣∣∣
+
|B′

A|
|B′ |

∣∣∣∣〈M∗, C(q)
〉∣∣∣∣

≤ 1408γ + 8
(
36 + 2√τB′

)2
ϵγ +

ϵ

1− 2ϵ
8d
k

+

∣∣∣∣∣∣
〈
M∗, 1

|B′|
∑
b∈B′

A

Ĉ(b,B′)

〉∣∣∣∣∣∣
≤ 1409γ + 8

(
36 + 2√τB′

)2
ϵγ +

∣∣∣∣∣∣
〈
M∗, 1

|B′|
∑
b∈B′

A

Ĉ(b,B′)

〉∣∣∣∣∣∣.
We can now combine this with equations 4.22:

τB′γ = ⟨M∗,DB′⟩

≤
∣∣∣∣∣
〈
M∗, Ĉ(B′)−C(q)

〉∣∣∣∣∣+
∣∣∣∣∣
〈
M∗, C(q)−C(q̂B′)

〉∣∣∣∣∣
≤ 2200γ + 8

(
36 + 2√τB′

)2
ϵγ + 51√τB′γ +

1
|B′|

∣∣∣∣∣
〈
M∗,

∑
b∈B′

A

Ĉ(b,B′)

〉∣∣∣∣∣.
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Thus:∣∣∣∣∣∣⟨M∗,
∑
b∈B′

A

Ĉ(b,B′)⟩

∣∣∣∣∣∣ ≥ (1− 2ϵ)
[
(1− 32ϵ)τB′ − (ϵ1152 + 51)√τB′ − 2200− 8 ∗ 362ϵ

] ∣∣∣BG∣∣∣γ
With ϵ ≤ 1/100, we get:∣∣∣∣∣∣⟨M∗,

∑
b∈B′

A

Ĉ(b,B′)⟩

∣∣∣∣∣∣ ≥ (0.66τB′ − 62√τB′ − 2260)
∣∣∣BG∣∣∣γ

On the other hand, for any collection of good batches B′′
G ⊆ B′ s.t. |B′′

G| ≤ ϵ
∣∣∣BG∣∣∣, we have by

Lemma 4: ∑
b∈B′′

G

⟨M∗, Ĉb,B′⟩ ≤ 8 max
S,S′∈[d]

∑
b∈B′′

G

⟨1S1TS′ , Ĉb,B′⟩

= 8 max
S,S′∈[d]

∑
b∈B′′

G

[
q̂b(S)− q̂B′(S)

][
q̂b(S

′)− q̂B′(S′)

]
.

We can decompose the terms in the sum:[
q̂b(S)− q̂B′(S)

][
q̂b(S

′)− q̂B′(S′)

]
=

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]
+

[
q(S)− q̂B′(S)

][
q(S′)− q̂B′(S′)

]
+

[
q̂b(S)− q(S)

][
q(S′)− q̂B′(S′)

]
+

[
q(S)− q̂B′(S)

][
q̂b(S

′)− q(S′)

]
.

By condition 1:
max
S,S′∈[d]

∑
b∈B′′

G

[
q̂b(S)− q(S)

][
q̂b(S

′)− q(S′)

]
≤ 33

∣∣∣BG∣∣∣γ.

By equation 4.11,

max
S,S′∈[d]

∑
b∈B′′

G

[
q(S)− q̂B′(S)

][
q(S′)− q̂B′(S′)

]
≤ |B′′

G|(33 + 2√τB′)2ϵγ.

By equations 4.14 and 4.11,

max
S,S′∈[d]

∑
b∈B′′

G

[
q(S)− q̂B′(S)

][
q̂b(S

′)− q(S′)

]
= max

S,S′∈[d]
|B′′

G|
[
q̂
B

′′
G
(S′)− q(S′)

][
q(S)− q̂B′(S)

]
.

≤ 2(33 + 2√τB′)
∣∣∣BG∣∣∣ϵγ.
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Combining the three bounds we have:∑
b∈B′′

G

⟨M∗, Ĉb,B′⟩ ≤ 8
∣∣∣B′′

G

∣∣∣(33 + 2√τB′)2ϵγ + 32(33 + 2√τB′)
∣∣∣BG∣∣∣ϵγ + 264

∣∣∣BG∣∣∣γ
≤ 8

∣∣∣BG∣∣∣(33 + 2√τB′)2ϵ2γ + 32(33 + 2√τB′)
∣∣∣BG∣∣∣ϵγ + 264

∣∣∣BG∣∣∣γ
≤
[
32τB′ϵ2 + (1056ϵ2 + 64)√τB′ + (1056ϵ+ 264)

] ∣∣∣BG∣∣∣γ.

Which gives with ϵ ≤ 1/100:∑
b∈B′′

G

⟨M∗, Ĉb,B′⟩ ≤ (0.0032τB′ + 65√τB′ + 275)
∣∣∣BG∣∣∣γ.

Thus, we have: ∑
b∈B′

A
⟨M∗, Ĉb,B′⟩∑

b∈B′′
G
⟨M∗, Ĉb,B′⟩

≥
0.66τB′ − 62√τB′ − 2260
0.02τB′ + 65√τB′ + 275 .

With √τB′ ≥ 200, ∑
b∈B′

A
⟨M∗, Ĉb,B′⟩∑

b∈B′′
G
⟨M∗, Ĉb,B′⟩

≥ 8.

4.A.7 Auxiliary Lemmas

Lemma 11 (Covariance is Lipschitz). Let q, q′ ∈ Rd and define ϵ = q′ − q. For any S,S′ ⊂ [d],
if
∣∣∣ϵ(S)∣∣∣∨ ∣∣∣ϵ(S′)

∣∣∣ ≤ 12, then∣∣∣∣CovS,S′ (q)−CovS,S′

(
q′
)∣∣∣∣ ≤ 15

k
max

(∣∣∣ϵ(S)∣∣∣, ∣∣∣ϵ(S′)
∣∣∣) .

Proof of Lemma 11. By equation (4.13), we have |∆S | ≤ 1 for all S ⊂ [d]. Therefore, by Lemma 3
and equation (4.20):∣∣∣∣CovS,S′ (q)−CovS,S′

(
q′
)∣∣∣∣ = ∣∣∣∣〈1S1TS′ , C(q)−C(q′)

〉∣∣∣∣
=

1
k

∣∣∣∣〈1S1TS′ , qqT − (q+ ϵ)(q+ ϵ)T + λ1ϵT + λϵ1T + (1− 2λ)Diag(ϵ)
〉∣∣∣∣

=
1
k

∣∣∣ϵ(S)∆S′ + ϵ(S′)∆S + (1− 2λ)ϵ(S ∩ S′)− ϵ(S)ϵ(S′)
∣∣∣

≤ 1
k

(∣∣∣ϵ(S)∣∣∣+ ∣∣∣ϵ(S′)
∣∣∣+ ∣∣∣ϵ(S)∣∣∣+ 12

∣∣∣ϵ(S)∣∣∣)
≤ 15

k
max

(
|ϵ(S)|, |ϵ(S′)|

)
.
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If 22ϵ
√

d ln(e/ϵ
k ≥ 1, the proven bound for the algorithm is trivially true. Else, whenever condition

1 holds, we have for any |B′
G| ≥ (1− 2ϵ)

∣∣∣BG∣∣∣:
max

∣∣∣∣q̂B′
G
(S)− q(S)

∣∣∣∣ ≤ 1.

Thus, Lemma 11 may be applied to CovS,S′(q̂B′
G
)−CovS,S′(q).

4.B Proof of Corollary 4.2
Lemma 12. Let p ∈ Pd and p′ ∈ Rd. Then sup

S⊆[d
|p(S)− p′(S)| ≤ ∥p− p′∥1 ≤ 2 sup

S⊆[d
|p(S)− p′(S)|.

Proof of Lemma 4.B. The first inequality follows from the triangle inequality. For the second one,
letting A = {j ∈ [d] : pj ≥ p′

j}, we have: ∥p−p′∥1 = p(A)−p′(A)+ p′(Ac)−p(Ac) ≤ 2 sup
S⊆[d
|p(S)−

p′(S)|.

Proof of Corollary 4.2. Let p̂ be the output of Algorithm 4 and p̂∗ = p̂
∥p̂∥1

. Then

∥p− p̂∗∥1 ≤ ∥p̂− p∥1 + ∥p̂− p̂∗|1 = ∥p̂− p∥1 +
∣∣∥p̂∥1 − 1

∣∣ ≤ 2∥p− p̂∥1.

4.C Lower bound: Proof of Proposition 4.1
For any two probability distributions p, q over some measurable space (X ,A), we denote by

χ2(p||q) =


∫

X
p
q dp− 1 if p≪ q

+∞ otherwise

the χ2 divergence between p and q. We start with the following Lemma.

Lemma 13. Assume d ≥ 3. There exists an absolute constant c > 0 such that for all estimator p̂
and all α-LDP mechanism Q, there exists a probability vector p ∈ Pd satisfying

E

 sup
z′∈C(Z)

∥∥∥p̂(z′)− p
∥∥∥

1

 ≥ c

(

d

α
√
kn

+
ϵ
√
d

α
√
k

)
∧ 1

 ,

where the expectation is taken over all collections of n′ clean batches Z1, . . . ,Zn′ where Zb =

(Zb1, . . . ,Zbk) and Zbl
iid∼ Qp.
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This Lemma is the analog of Proposition 4.1 but with the guarantee in expectation rather than
with high probability. We first prove this Lemma before moving to the proof of Proposition 4.1.

Proof of Lemma 13. We first show that R∗
n,k(α, ϵ, d) ≥ c

(
d

α
√
kn
∧ 1
)

for some small enough abso-
lute constant c > 0. Informally, this amounts to saying that the estimation problem under both
contamination and privacy is more difficult than just under privacy. Formally:

R∗
n,k(α, ϵ, d) = inf

p̂,Q
sup
p∈Pd

E

 sup
z′∈C(Z))

∥∥∥p̂(z′)− p
∥∥∥

1

 ≥ inf
p̂,Q

sup
p∈Pd

E

[∥∥∥p̂− p∥∥∥
1

]
≥ c

(
d

α
√
kn
∧ 1
)

,

where the last inequality follows from [68] Proposition 6. We also give a simpler proof of this fact
in Appendix 4.D, using Assouad’s lemma.

We now prove R∗
n,k(α, ϵ, d) ≥ c

(
ϵ
√
d

α
√
k
∧ 1
)

. For any α-LDP mechanism Q and probability vector
p ∈ Pd, denote by Qp the density of the privatized random variable Z defined by Z|X ∼ Q(·|X) and
by Qp⊗k the density of the joint distribution of k iid observations with distribution Qp. Define the
set of pairs of probability vectors that are indistinguishable after privatization by Q and adversarial
contamination

A(Q) =
{
(p, q) ∈ Pd

∣∣∣ TV (Qp⊗k,Qq⊗k) ≤ ϵ
}

. (4.23)

To derive the adversarial rate, it suffices to prove

inf
Q

sup
p,q∈A(Q)

∥p− q∥1 ≥ c
{
ϵ
√
d

α
√
k
∧ 1
}

. (4.24)

To understand why (4.24) is a natural program to consider, fix an α-LDP mechanism Q and denote
by (Z,U , ν) its image space. If (p, q) ∈ A(Q), then letting

A =
Qp⊗k ∨Qq⊗k

1 + TV (Qp⊗k,Qq⊗k)
, N (p) =

A− (1− ϵ)Qp⊗k

ϵ
, and N (q) =

A− (1− ϵ)Qq⊗k

ϵ
,

we can directly check that A,N (p) and N (q) are probability measures over (Z,U) (for N (p) and
N (q), we use the fact that (p, q) ∈ A(Q) to prove that N (p)(dz) ≥ 0 and N (q)(dz) ≥ 0). More-
over, it holds that A = (1− ϵ)Qp⊗k + ϵN (p) = (1− ϵ)Qq⊗k + ϵN (q). This is exactly equivalent
to saying that any clean family of n batches with distribution Qp⊗k or Qp⊗k can be transformed
into a ϵ-contaminated family of n batches with distribution A through ϵ adversarial contamination.
By observing such a contaminated family, it is therefore impossible to determine whether the un-
derlying distribution is p or q, so that the quantity ∥p− q∥1/2 is a lower bound on the minimax
estimation risk.
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We now prove (4.24). For all j ∈ {1, . . . , d} and z ∈ Z, set

qj(z) =
Q(z|j)
Q(z|1) − 1, dµ(z) = Q(z|1)dν(z), (4.25)

and
ΩQ =

(
ΩQ(j, j′)

)
jj′

=

(∫
Z
qj(z)qj′(z)dµ(z)

)
ij

(4.26)

Given Q, we first prove that a sufficient condition for (p, q) to belong to A(Q) is that (p− q)TΩ(p−
q) ≤ Cϵ2/k for some small enough absolute constant C > 0. Fix p, q ∈ Pd and define ∆ = p− q.
By [188], Section 2.4, we have

TV (Qp⊗k,Qq⊗k) ≤
√
−1 +

(
1 + χ2(Qp||Qq)

)k. (4.27)

Now,

χ2(Qp||Qq) =
∫

Z

(
Qp(z)−Qq(z)

)2
Qq(z)

dz =
∫

Z

(∑d
j=1Q(z|j) ∆j

)2

∑d
j=1Q(z|j) qj

dz

=
∫

Z

(∑d
j=1

(
Q(z|j)
Q(z|1) − 1

)
∆j

)2

∑d
j=1

Q(z|j)
Q(z|1) qj

Q(z|1)dν(z) since
d∑
j=1

∆j = 0

≤ eα
∫

Z

d∑
j,j′=1

∆j∆j′qj(z)qj′(z)dµ(z)

= eα∆TΩQ∆.

Write Ω = ΩQ and assume that ∆TΩQ∆ ≤ Cϵ2/k for C ≤ e−2. Then equation (4.27) yields:

TV (Qp⊗k,Qq⊗k) ≤
√
−1 +

(
1 + eα∆TΩ∆

)k ≤ √−1 + exp
(
eαk∆TΩ∆

)
≤
√
−1 + exp (Ceαϵ2) ≤ ϵ.

Defining

Aχ2(Q) =

{
(p, q) ∈ P

∣∣∣∣ (p− q)TΩ(p− q) ≤ Cϵ2

k

}
, (4.28)

it follows that Aχ2(Q) ⊂ A(Q) for all Q, so that

inf
Q

sup
(p,q)∈A(Q)

∥∆∥1 ≥ inf
Q

sup
(p,q)∈Aχ2 (Q)

∥∆∥1.

Fix Q and note that ΩQ is symmetric and nonnegative. We sort its eigenvalues as {λ1 ≤ · · · ≤ λd}
and denote by v1, . . . , vd the associated eigenvectors. We also define j0 = max

{
j ∈ {1, . . . , d} : λj ≤ 3e2α2

}
.

Noting that ∀j : |qj | ≤ eα and that µ is a probability measure, we get that Tr(Ω) =
d∑
j=1

∫
Z q

2
jdµ ≤
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de2α2, so that (d− j0)3e2α2 ≤ de2α2 hence j0 ≥ 2d/3.

Let H =
{
x ∈ Rd : xT1 = 0

}
, and note that V := span(vj)j≤j0 ∩H is of dimension at least

m = 2d
3 − 1 ≥ d

3 . Therefore by Lemma 14, there exists ∆ ∈ V such that ∥∆∥22 = Cϵ2

2e2α2k ∧
1
d and

∥∆∥1 ≥ C14
√
m∥∆∥2 ≳ ϵ

√
d

α
√
k
. Noting that over Rd, ∥ · ∥1 ≤

√
d∥ · ∥2, we also have ∥∆∥1 ≤ ϵ

α
√
k
∧ 1 ≤

1.

This allows us to define the following vectors: p =
(

|∆j |
∥∆∥1

)d
j=1
∈ Pd and q = p− ∆. To check that

q ∈ Pd, note that the condition ∆T1 = 0 ensures that qT1 = 1. Moreover, for all j ∈ {1, . . . , d} we
have qj = |∆j |

∥∆∥1
− ∆j ≥ 0 since ∥∆∥1 ≤ 1.

Since by construction, we have ∆ΩQ∆ ≤ 2e2α2∥∆∥22 ≤ Cϵ2

k and p, q ∈ Pd, we have (p, q) ∈ Aχ2(Q).
For all α-LDP mechanism Q, it therefore holds that sup

(p,q)∈Aχ2 (Q)
∥∆∥1 ≳ ϵ

√
d

α
√
k
∧ 1. Taking the

infimum over all Q, the result is proven.

Lemma 14. There exists an absolute constant C14 such that for all m ∈ {⌈d3⌉, . . . , d} and all linear
subspace V ⊂ Rd of dimension m, it holds:

sup
v∈V

∥v∥1
∥v∥2

≥ C14
√
m.

Proof of Lemma 14. Let V be a linear subspace of Rd of dimension m and denote by ΠV :=(
ΠV (i, j)

)
ij the orthogonal projector onto V . Let X ∼ N (0, ΠV ). For some large enough absolute

constant C > 0 we have:

sup
v∈V

∥v∥1
∥v∥2

≥ E

[
∥X∥1
∥X∥2

]
≥ E

[
∥X∥1
∥X∥2

1
{
∥X∥2 ≤ C

√
m
}]

≥ 1
C
√
m

E [∥X∥1]︸ ︷︷ ︸
Principal term

− 1
C
√
m

E

[
∥X∥11

{
∥X∥2 > C

√
m
}]

︸ ︷︷ ︸
Residual term

(4.29)

We first analyze the principal term.

E∥X∥1 =
d∑

i,j=1
E|Xij | =

√
2
π

d∑
i,j=1

∣∣ΠV (i, j)
∣∣1/2

Note that ∀i, j ∈ {1, . . . , d} : |ΠV (i, j)| ≤ 1 and that
d∑

i,j=1
Π2
V (i, j) = m. Therefore:

inf
dim(V )=m

d∑
i,j=1

∣∣ΠV (i, j)
∣∣1/2 ≥ inf

A∈Rd×d

d∑
i,j=1

|aij |1/2 s.t.

∥A∥22 = m

∀i, j : |aij | ≤ 1.
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= inf
a∈Rd×d

d∑
i,j=1

aij s.t.


∑d
i,j=1 a

4
ij = m

∀i, j : 0 ≤ aij ≤ 1.
(4.30)

The last optimization problem amounts to minimizing an affine function over a convex set, hence
the solution, denoted by (a∗

ij)ij , is attained on the boundaries of the domain. Therefore, ∀i, j ∈
{1, . . . , d} : a∗

ij ∈ {0, 1}. It follows from ∑
ij a

4
ij = m that the family a∗

ij contains exactly m nonzero
coefficients, which are all equal to 1. Therefore, the value of the last optimization problem is m,
which yields that the principal term is lower bounded by

√
m
C .

We now move to the residual term. Writing X =
∑m
j=1 xjej where (ej)mj=1 is an orthonormal basis

of V , we have:

E

[∥∥∥X∥∥∥
1
1

{∥∥∥X∥∥∥
2
> C
√
m

}]
≤
√
dE

[∥∥∥X∥∥∥
2
1

{∥∥∥X∥∥∥
2
> C
√
m

}]
≤
√
d

E

[∥∥∥X∥∥∥2

2
1

{∥∥∥X∥∥∥2

2
> C2m

}]
1/2

≤
√
d

mE

x2
11


m∑
j=1

x2
j ≥ C2m





1/2

. (4.31)

Moreover

E

x2
11


m∑
j=1

x2
j ≥ C2m


 ≤ E

[
x2

1 1 {x1 ≥ C}
]
+ E

x2
1 1


m∑
j=2

x2
j ≥ C2(m− 1)




≤ E

[
x2

1 1 {x1 ≥ C}
]
+ E

[
x2

1
]

P

∣∣∣∣ m∑
j=2

x2
j −Ex2

1

∣∣∣∣ ≥ (C2 −Ex2
1
)
(m− 1)


(4.32)

By the dominated convergence Theorem, lim
C→+∞

E
[
x2

1 1 {x1 ≥ C}
]
= 0. Moreover, by Chebyshev’s

inequality:

P

∣∣∣∣ m∑
j=2

x2
j −Ex2

1

∣∣∣∣ ≥ (C2 −Ex2
1
)
(m− 1)

 ≤ V(x2
1)(

C2 −Ex2
1

)2
(m− 1)

→
C→+∞

0. (4.33)

By (4.31), (4.32) and (4.33), we conclude that for all absolute constant c > 0, there exists a large
enough absolute constant C > 0 such that the residual term is at most c

√
d

C . Take c = 1
2 and m ≥ d

3 ,
then by equation (4.29) we get:

sup
v∈V

∥v∥1
∥v∥2

≥
√
m

C
− c
√
d

C
≥
(

1−
√

3
2

)√
m

C
=: C14

√
m.
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Proof of Proposition 4.1. We distinguish between two cases.

1. First case If d
α

√
nk
≤ ϵ

α

√
d
k i.e. if the dominating term comes from the contamination, taking

p, q ∈ Pd like in the proof of Proposition 13 and t ∈ {p, q} uniformly at random yields that

inf
p̂

sup
p∈Pd

P

 sup
Z∈C(Y )

∥p̂(Z)− p∥1 ≥ ∥p− q∥1/2


≥ inf

p̂
Et∈{p,q}Pt

 sup
Z∈C(Y )

∥p̂(Z)− p∥1 ≥ ∥p− q∥1/2

 ≥ 1
2 ≥ O(e

−d),

where ∥p− q∥1 ≳ ϵ
α

√
d
k ∧ 1.

2. Second case If d
α

√
nk
≥ ϵ

α

√
d
k i.e. if the dominating term comes from the privacy constraint,

then we set N = nk and assume that we observe Z1, . . . ,ZN iid with probability distribution
Z|X ∼ Q(·|X) such that X has a discrete distribution over {1, . . . , d}. In other words, the
random variables Zi are no longer batches, but rather we have nk iid clean samples that are
privatized versions of iid samples with distribution p. By section 4.D, it holds that

inf
p̂

sup
p∈Pd

E

[
sup

contamination
∥p̂− p∥1

]
≥ inf

p̂
sup
p∈Pd

E∥p̂− p∥1 ≥ c
d

α
√
N

,

for some small enough absolute constant c > 0. We use the definition of γ and of the cubic
set of hypotheses P from (4.37). Let p̂ be any estimator of the probability parameter and,
for some small enough absolute constant c > 0, define

r = c
d√
kn

. (4.34)

We first justify that for this particular set of hypotheses, it is possible to assume wlog that

∥p− p̂∥1 ≤ 6γd ≤ 6 cγr. (4.35)

Indeed, define u =
(

1
d

)d
j=1

. If for some observation Z = (Z1, . . . ZN ) the estimate p̂(Z)

satisfies ∥p̂(Z)−u∥1 > 4γd, then it is possible to improve p̂ by replacing it with the estimator
p̄ satisfying ∥p̄(Z)− p∥1 ≤ 6γd and defined as:

p̄ := p̂1

{∥∥∥p̂− u∥∥∥
1
≤ 4γd

}
+ u1

{∥∥∥p̂− u∥∥∥
1
> 4γd

}
.

Indeed, recalling that ∀p ∈ P :
∥∥∥u− p∥∥∥

1
= 2γd, there are two cases.

• If
∥∥∥p̂(Z)− u∥∥∥

1
≤ 4γd, then p̂ = p̄ so that

∥∥∥p− p̄∥∥∥
1
≤
∥∥∥p− u∥∥∥

1
+
∥∥∥u− p̄∥∥∥

1
≤ 2γd+ 4γd =

6γd.
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• Otherwise, p̄ = u and we get∥∥∥p̄(Z)− p∥∥∥
1
= 2γd = 4γd− 2γd <

∥∥∥p̂(Z)− u∥∥∥
1
−
∥∥∥u− p∥∥∥

1
≤
∥∥∥p̂(Z)− p∥∥∥

1
,

which proves that (4.35) can be assumed wlog. Now, from the proof of Lemma 15, we also
have

sup
p∈P

Ep

∥∥∥p̂− p∥∥∥
1
≥ cγ

4 r =: Cr.

Fix any p ∈ P and write π := sup
p∈P

Pp (∥p̂− p∥1 ≥ cr) for c = cγ
(

1
4 − 6δ

)
> 0 for δ < 1

24 =: c′.

It follows that:

Cr ≤ sup
p∈P

Ep

∥∥∥p̂− p∥∥∥
1

= sup
p∈P

 Ep

∥∥∥p̂− p∥∥∥
1

1

{∥∥∥p̂− p∥∥∥
1
≥ cr

} + Ep

∥∥∥p̂− p∥∥∥
1

1

{∥∥∥p̂− p∥∥∥
1
< cr

} 
≤ 6cγr · π + cr by equation (4.35), so that π ≥ C − c

6cγ
≥ δ ≥ O(e−d).

4.D Simpler proof of the lower bound with privacy and no outliers
Here, we assume that k = 1 and that we observe Z1, . . . ,Zn that are n iid with probability distri-
bution Z|X ∼ Q(·|X) and X has a discrete distribution over {1, . . . , d}. We prove the following
Lemma
Lemma 15. In this setting, it holds

inf
p̂

sup
p∈Pd

E∥p̂− p∥1 ≥ c
d

α
√
n

, (4.36)

for some small enough absolute constant c > 0.
For all ϵ ∈ {±1}⌊d/2⌋, define the probability vector pϵ ∈ Pd such that

∀j ∈ {1, . . . , d} : pϵ(j) =


1
d + ϵj γ if j ≤ d

2 ,
1
d if d is odd and j = d+1

2 ,
1
d − ϵd−j+1γ otherwise,

(4.37)

where γ = cγ
α

√
n
∧ cγ

d and cγ is a small enough absolute constant. Consider the cubic set of hypotheses

P =

{
pϵ
∣∣∣ ϵ ∈ {±1}⌊d/2⌋

}
. (4.38)
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This set P consists of M = 2⌊d/2⌋ hypotheses. Over P, the ℓ1 distance simplifies as follows:

∀ϵ, ϵ′ ∈ {±1}⌊d/2⌋ : ∥pϵ − pϵ′∥1 = 4γ ρ(ϵ, ϵ′), (4.39)

where ρ(ϵ, ϵ′) =
⌊d/2⌋∑
j=1

1ϵj ̸=ϵ′j denotes the Hamming distance between ϵ and ϵ′.

To apply Assouad’s Lemma (see e.g. [188] Theorem 2.12.(ii)), let ϵ, ϵ′ ∈ {±1}⌊d/2⌋ such that
ρ(ϵ, ϵ′) = 1. Recall that the observations Z1, . . . ,Zn are iid and follow the distribution Z|X ∼
Q(·|X) where Q is an α-locally differentially private mechanism. Fix any such mechanism Q, and
denote by qϵ and qϵ′ the respective densities of Z when X ∼ pϵ and X ∼ pϵ′ . We therefore have
∀z ∈ Z : qϵ(z) =

∫
Q(z|x) pϵ(x)dν(x) where ν denotes the counting measure over {1, . . . , d}.

For some probability distribution P , we also denote by P⊗n the law of the probability vector
(X1, . . . ,Xn) when Xi

iid∼ P . Now, we have:

TV
(
q⊗n
ϵ , q⊗n

ϵ′

)
≤
√
χ2
(
q⊗n
ϵ || q⊗n

ϵ′

)
=
√(

1 + χ2 (qϵ || qϵ′)
)n − 1, (4.40)

and defining ∆p(x) = pϵ(x)− pϵ′(x) for all x ∈ {1, . . . , d}, we can write:

χ2 (pϵ || pϵ′) =
∫

Z

(
qϵ(z)− qϵ′(z)

)2
qϵ′(z)

dz =
∫

Z

(∫
Q(z|x) ∆p(x)dν(x)

)2∫
Q(z|x) pϵ′(x)dν(x)

dz

=
∫

Z
Q(z|1)

(∫
X

(
Q(z|x)
Q(z|1) − 1

)
∆p(x)dν(x)

)2

∫
X

Q(z|x)
Q(z|1) pϵ′(x)dν(x)

dz since
∫

∆p(x)dν(x) = 0

≤
∫

Z
Q(z|1)

(∫
X

∣∣∣∣Q(z|x)
Q(z|1) − 1

∣∣∣∣ ∣∣∣∆p(x)∣∣∣ dν(x)
)2

∫
X
e−α pϵ′(x)dν(x)

dz

≤
∫

Z
Q(z|1)

(
Cα TV (pϵ, pϵ′)

)2
e−α dz = eαC2α2 (2γ ρ(pϵ, pϵ′))2

≤ 12C2α2γ2 ≤
12C2c2

γ

n
,

where C > 0 is an absolute constant such that for all α ∈ (0, 1) we have eα − 1 ≤ Cα and
1− e−α ≤ Cα. Now by (4.40), we have:

TV
(
q⊗n
ϵ , q⊗n

ϵ′

)
≤
√(

1 + χ2 (qϵ || qϵ′)
)n − 1 ≤

√
exp

(
12C2c2

γ

)
− 1.
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Choosing cγ small enough therefore ensures that TV
(
q⊗n
ϵ , q⊗n

ϵ′

)
≤ 1

2 , so that by Assouad’s lemma,
the minimax risk is lower bounded as:

inf
p̂

sup
p∈Pd

E∥p̂− p∥1 ≥
⌊
d

2

⌋
1
24γ

(
1− 1

2

)
≥ cγ

10

(
d

α
√
n
∧ 1
)

.
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Chapter 5

Benign overfitting in adaptive
nonparametric regression

This chapter is based on the paper “benign overfitting and adaptive nonparametric regression” [170]
with Suzanne Sigalla and Alexandre Tsybakov (arXiv:2206.13347).

Abstract
In the context of nonparametric regression with square loss, we construct an estimator that is

a continuous function interpolating the data points with high probability, while being minimax
optimal and adaptive to the unknown smoothness.

5.1 Introduction
Benign overfitting has attracted a great deal of attention in the recent years. It was initially mo-
tivated by the fact that deep neural networks have good predictive properties even when perfectly
interpolating the training data [105], [98], [167], [154]. Such a behavior stands in strong contrast
with the classical point of view that perfectly fitting the data points is not compatible with predict-
ing well. With the aim of understanding this new phenomenon, a series of recent papers studied
benign overfitting in linear regression setting, see [122], [146], [133], [144], [152], [175] and the
references therein. The main conclusion for the linear model is that an unbalanced spectrum of the
design matrix and over-parametrization, which in a sense approaches the model to non-parametric
setting, are essential for benign overfitting to occur in linear regression. Extensions to kernel ridge-
less regression were considered in [142] when the sample size n and the dimension d were assumed
to satisfy n ≍ d, and in [143] for a more general case d ≍ nα for α ∈ (0, 1). These papers give
data-dependent upper bounds on the risk that can be small assuming favorable spectral properties
of the data and the kernel matrix. On the other hand, if d is constant (independent of n) then the
least-norm interpolating estimator with respect to the Laplace kernel is inconsistent [116].

In the line of work cited above, benign overfitting was understood as achieving simultaneously in-
terpolation and prediction consistency, or possibly, consistency with some suboptimal rates. On the
other hand, it was shown that, in non-parametric regression setting, interpolating estimators can
attain minimax optimal rates [106]. Namely, it is proved in [106] that interpolation with minimax
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optimal rates can be achieved by Nadaraya-Watson estimator with a singular kernel.

The idea of using singular kernels can be traced back to [7] giving start to popular techniques in
image processing referred to as Shepard interpolation. In statistical language, Shepard interpolant
is nothing else but the Nadaraya-Watson estimator with kernel K(u) = 1/∥u∥2, where ∥ · ∥ denotes
the Euclidean norm and u ∈ R2. Unaware of Shepard’s work and its subsequent extensive use in
image processing, [28] considered the same estimator in general dimension d, that is, with the kernel
K(u) = ∥u∥−d for u ∈ Rd, and proved that the Nadaraya-Watson estimator with such a kernel is
consistent in probability but fails to be pointwise almost surely consistent. However, this kernel is
not integrable and has a peculiar property that the bandwidth cancels out from the definition of
the estimator. Thus, the bias cannot be controlled and the bias-variance trade-off argument based
on bandwidth selection does not apply. It remains unclear whether some rates of convergence can
be achieved by such an estimator. Therefore, it was suggested in [106, 99] to localize and modify
the kernel as K(u) = ∥u∥−a1(∥u∥ ≤ 1) where 0 < a < d/2 rather than a = d and 1(·) denotes
the indicator function. The estimator with such a weaker type of singularity is also interpolating,
and it was shown in [106, 99] that it achieves the minimax rates of convergence on the β-Hölder
classes with 0 < β ≤ 2. Also, [97] proved a similar claim for the k nearest neighbor analog of this
estimator with 0 < β ≤ 1. However, those results were restricted to functions with low smoothness
β and the suggested estimators were not adaptive to β.

In this paper, we show that:
(i) interpolating estimators attaining minimax optimal rates on β-Hölder classes can be obtained

for any smoothness β > 0,
(ii) estimators with such properties can be constructed adaptively to the unknown smoothness

β ∈ (0,βmax], for any βmax > 0.

The estimators that we consider to achieve (i) are local polynomial estimators (LPE) with singular
kernels. In order to obtain adaptive estimators, we apply aggregation techniques to a family of
LPE with singular kernels.
As a by-product, we obtain non-asymptotic bounds for the squared risk of LPE in classical setting
with non-singular kernels. To the best of our knowledge, such bounds are missing in the existing
literature on LPE that was mainly focused on asymptotic properties such as convergence in prob-
ability or pointwise asymptotic normality, cf. [11, 14, 18, 178].

Note that local polynomial method with singular kernels has been used as interpolation tool in
numerical analysis, starting from [12]. It was also invoked in the context of non-parametric regres-
sion in [184]. However, [12, 184] only discussed functional properties, such as the smoothness of
interpolants, rather than their statistical behavior.

5.2 Preliminaries

5.2.1 Notation

For any vector x = (x1, . . . ,xd) ∈ Rd and any multi-index s = (s1, . . . , sd) ∈ Nd, we define
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|s| =
d∑
i=1

si, s! = s1! . . . sd!

xs = xs1
1 . . . xsdd Ds = ∂s1+···+sd

∂x
s1
1 ...∂x

sd
d

.

We denote by ∥ · ∥ the Euclidean norm, and by Card(J) the cardinality of set J . For any integer
k ∈ N∗, we set [k] = {1, . . . , k}. For any x ∈ Rd, r > 0, we denote by Bd(x, r) the closed Euclidean
ball centered at x with radius r. We set for brevity Bd = Bd(0, 1). For any β > 0, we denote by ⌊β⌋
the maximal integer less than β, and by ⌈β⌉ the minimal integer greater than β. We use symbols
C,C ′ to denote positive constants that can vary from line to line.

For any k > 0, we denote by Ik the identity matrix of size k. For any square matrix M , the writing
M ≻ 0 means that M is positive definite. For any matrix M , we denote by M+ its Moore-Penrose
inverse, and by ∥M∥∞ its spectral norm.

5.2.2 Model

Let (X,Y ) be a pair of random variables in Rd×R with distribution PXY and assume that we are
given n i.i.d. observations D :=

{
(X1,Y1), . . . , (Xn,Yn)

}
with distribution PXY . We denote by PX

the marginal distribution of X and assume that it admits a density p with respect to the Lebesgue
measure on the compact set Supp(p). We assume that for all x ∈ Supp(p), the regression function
f(x) = E(Y |X = x) exists and is finite. Set ξ(X) = Y −E(Y |X). Equivalently, the model can be
written as Yi = f(Xi) + ξ(Xi), where E(ξ(Xi)|Xi) = 0. We make the following assumptions.
Assumption (A1). E(|ξ(X)|2+δ|X = x) ≤ C for all x ∈ Supp(p), where δ and C are positive
constants.
Assumption (A2). X is distributed with Lebesgue density p(·) such that p ∈ [pmin, pmax] where
pmax ≥ pmin > 0. The support Supp(p) of p is a convex compact set contained in Bd.

For any estimator fn of f based on the sample D, we consider the following L2-loss :

∥fn − f∥2L2 = EX

([
fn(X)− f(X)

]2) =
∫ [

fn(x)− f(x)
]2
p(x)dx.

Here, EX denotes the expectation with respect to PX . Next, we define the expected risk as

E
[
∥fn − f∥2L2

]
,

where E denotes the expectation with respect to the distribution of D.

Definition 1 (Interpolating estimator). An estimator fn of f based on a sample D = {(X1,Y1), . . . , (Xn,Yn)}
is called interpolating over D if fn(Xi) = Yi for i = 1, . . . ,n.
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5.2.3 Hölder classes of functions

For any k-linear form A : (Rd)k −→ R, we define its norm as follows

∥A∥ := sup
{∣∣∣A[h1, . . . ,hk]

∣∣∣ : ∥hj∥ ≤ 1, j ∈ [k]

}
. (5.1)

Given a k-times continuously differentiable function f : Rd −→ R and x ∈ Rd, we denote by
f (k)(x) : (Rd)k −→ R the following k-linear form

f (k)(x)[h1, . . . ,hk] =
∑

|mj |=1,∀j∈[k]
Dm1+···+mkf(x)hm1

1 . . . hmkk , ∀h1, . . . ,hk ∈ Rd,

where m1, . . . ,mk ∈ Nd are multi-indices. Throughout the paper, we will consider the following
Hölder class of functions.

Definition 2. Let β > 0, L > 0, and let f : Bd −→ R be a ℓ = ⌊β⌋ times continuously differentiable
function. We denote by Σ(β,L) the set of all functions f defined on Bd such that

max
0≤k≤ℓ

sup
x∈Bd
∥f (k)(x)∥+ sup

x,x′∈Bd

∥f (ℓ)(x)− f (ℓ)(x′)∥
∥x− x′∥β−ℓ ≤ L.

These classes of functions have nice embedding properties that will be needed to prove our result
on adaptive estimation. For β′ ≤ β ≤ 1, we clearly have Σ(β,L) ⊆ Σ(β′,L). Analogous embedding
is valid for β > 1 as stated in the next lemma proved in the Appendix.

Lemma 1. For any 0 < β′ ≤ β and L > 0 we have Σ(β,L) ⊆ Σ(β′, 2L).

The class Σ(β,L) is closely related to several differently defined Hölder classes used in the literature.
One of them is based on Taylor approximation, cf., for example, [11]. For any x ∈ Rd and any
ℓ times continuously differentiable real-valued function f on Rd, we denote by Tfx its Taylor
polynomial of degree ℓ at point x:

Tfx(x
′) =

∑
0≤|s|≤ℓ

(x− x′)s

s!
Dsf(x′).

Lemma 2. Let β > 0, L > 0 and f ∈ Σ(β,L). Then for all x, y ∈ Bd, and ℓ = ⌊β⌋ it holds that

∣∣f(x)− Tfy(x)∣∣ ≤ L

ℓ!
∥x−y∥β.

Thus, we have Σ(β,L) ⊆ Σ′(β,L/⌊β⌋!), where Σ′(β,L′) stands for the class of all functions f
satisfying the relation

∣∣f(x)− Tfy(x)∣∣ ≤ L′∥x−y∥β.
Next, considering one more definition of Hölder class:

Σ̃(β,L) =
{
f : Bd → R : sup

x,x′

∥f (ℓ)(x)− f (ℓ)(x′)∥
∥x− x′∥β−ℓ ≤ L

}
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we also immediately have that Σ(β,L) ⊆ Σ̃(β,L). It follows from [14] that the minimax estimation
rate on the class Σ̃(β,L) under the squared loss that we consider below is n− 2β

2β+d up to constants
depending only on β and d. Notice that the functions in Σ̃(β,L) used in the lower bound construc-
tion in [14] can be rescaled into functions in Σ(β,L) by multiplying by a factor depending only on
β and d. Hence, the lower bound construction in [14] remains valid for the class Σ(β,L). It implies
that the minimax rate of estimation on the class Σ(β,L) is n− 2β

2β+d . In conclusion, though Σ(β,L)
is a subclass of suitable Hölder classes Σ′ and Σ̃ it is not substantially smaller, in the sense that
estimation over these classes is essentially equally difficult.

5.3 Local polynomial estimators and interpolation
For ℓ ∈ N let Cℓ,d = (ℓ+dd ) be the cardinality of the set of multi-indices {s = (s1, . . . , sd) ∈
Nd, 0 ≤|s| ≤ ℓ}. We assume that the elements s(1), . . . , s(Cℓ,d) of this set are ordered according
to the increasing values of |s|, and in an arbitrary way for equal values of |s|. In particular,
s(1) = (0, . . . , 0). For any u ∈ Rd, define the vector U(u) ∈ RCℓ,d as follows:

U(u) :=

(
us

s!

)
|s|≤ℓ

,

where the components of U(u) are ordered in the same way as s(i)’s. In particular, the first com-
ponent of U(u) is 1 for any u.

The definition of local polynomial estimator usually given in the literature is as follows, cf., e.g.,
[188]. Let K : Rd → R+ be a kernel, h > 0 be a bandwith and ℓ ≥ 0 be an integer. Consider a
vector θ̂n(x) ∈ RCℓ,d such that

θ̂n(x) ∈ argmin
θ∈RCℓ,d

n∑
i=1

Yi − θ⊤U

(
Xi − x
h

)2

K

(
Xi − x
h

)
(5.2)

Then

fn(x) = U⊤(0)θ̂n(x) (5.3)

is called a local polynomial estimator of order ℓ of f(x). Note that fn(x) is the first component of
θ̂n(x).

However, this definition is not convenient for our purposes. First, θ̂n(x) is not uniquely defined for
such x ∈ Rd that the matrix

Bnx :=
1
nhd

n∑
i=1

U

(
Xi − x
h

)
U⊤

(
Xi − x
h

)
K

(
Xi − x
h

)
∈ RCℓ,d×Cℓ,d
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is degenerate. Furthermore, θ̂n(x) is not defined for x = Xi if the kernel K has a singularity at 0,
which will be the main case of interest in what follows. Therefore, we adopt the following slightly
different definition.

Definition 3 (Local polynomial estimator). If the kernel K is bounded then the local polynomial
estimator of order ℓ (or shortly, LP(ℓ) estimator) of f(x) at point x is defined as

fn(x) =
n∑
i=1

YiWni(x), (5.4)

where, for i = 1, . . . ,n, the weights Wni(x) are given by

Wni(x) =
U⊤(0)
nhd

B+
nxU

(
Xi − x
h

)
K

(
Xi − x
h

)
. (5.5)

If the kernel K has a singularity at 0, that is, limu→0K(u) = +∞, then the LP(ℓ) estimator of
f(x) at point x /∈ {X1, . . . ,Xn} is still defined by (5.4) while we set, for j = 1, . . . ,n,

fn(Xj) = lim sup
z→Xj

fn(z). (5.6)

The purpose of (5.6) is to provide a valid definition for kernels with singularity at 0. We introduce
lim sup in (5.6) for formal reasons. In the cases of our interest described in the next lemma there
exists an exact limit in (5.6): limx→Xj fn(x) = Yj for all j ∈ [n], which means that the estimator
fn is interpolating.

Lemma 3. [Interpolation property of LPE] Let fn be an LP(ℓ) estimator with kernel K : Rd → R+

having a singularity at 0, that is, limu→0K(u) = +∞, and continuous on Rd \ {0}. In particular,
there exist c0 > 0 and ∆ > 0 such that

K(u) ≥ c01(∥u∥ ≤ ∆), ∀u ∈ Rd. (5.7)

Assume that X1, . . . ,Xn are distinct points in Rd and there exists a constant λ1 > 0 such that

n∑
j=1

U

(
Xj − x
h

)
U⊤

(
Xj − x
h

)
1
(∥∥∥∥Xj − x

h

∥∥∥∥ ≤ ∆

)
≻ λ1ICℓ,d (5.8)

for all x in some neighborhood of Xi, where ICℓ,d denotes the identity matrix. Then fn(Xi) = Yi.

For ℓ = 0 (corresponding to the Nadaraya-Watson estimator) condition (5.8) is trivially satisfied
since the expression on the left hand side is a positive scalar for any x in a neighborhood of Xi.
For general ℓ, this condition is satisfied with high probability if Xj ’s are distributed with a density
bounded away from zero on its support. Indeed, we have the following result. For ∆ > 0 consider
the matrix

Bnx :=
1
nhd

n∑
i=1

U

(
Xi − x
h

)
U⊤

(
Xi − x
h

)
1
(∥∥∥∥Xi − x

h

∥∥∥∥ ≤ ∆

)
∈ RCℓ,d×Cℓ,d .
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Lemma 4. Let h ≤ α, where α > 0. Let Assumption (A2) be satisfied. Then, the following holds.
(i) For any ∆ > 0 there exist constants λ0(ℓ) > 0, c > 0 independent of n and x and depending
only on ℓ,α, ∆, d, p(·) such that

P
(

inf
x∈Supp(p)

λmin(Bnx) ≥ λ0(ℓ)

)
≥ 1− c(h−d2−de−nhd/c + e−n3h2d/c),

where λmin(Bnx) is the minimal eigenvalue of Bnx. Moreover, λ0(ℓ) ≥ λ0(ℓ′) if ℓ ≤ ℓ′.
(ii) If K is a kernel satisfying (5.7) then there exist constants λ′

0(ℓ) > 0, c′ > 0 independent of n
and x and depending only on ℓ,α, ∆, d, p(·) such that

P
(

inf
x∈Supp(p)

λmin(Bnx) ≥ λ′
0(ℓ)

)
≥ 1− c′(h−d2−de−nhd/c′

+ e−n3h2d/c′
).

Note that part (ii) of Lemma 4 is an immediate consequence of its part (i) and the fact that
Bnx ≻ c0Bnx if (5.7) holds. Also, the next corollary follows immediately from Lemmas 3 and 4.

Corollary 1. Let fn be an LP(ℓ) with kernel K : Rd → R+ having a singularity at 0, that is,
limu→0K(u) = +∞, and continuous on Rd \ {0}. Let h = αn

− 1
2β+d , where α,β > 0 and let

Assumption (A2) be satisfied. Then, there exists a constant c′ > 0 such that, with probability
at least 1− c′e−An/c′, where An = n

2β
2β+d , the LPE fn is interpolating, that is, fn(Xi) = Yi for

i = 1, . . . ,n. Furthermore, the LP(0) estimator is interpolating with probability 1.

Note that the kernels K(u) = ∥u∥−a1(∥u∥ ≤ 1) with a ∈ (0, d/2) considered in [99, 106]
are not continuous on Rd \ {0} and thus do not satisfy the conditions of Lemma 3 and Corol-
lary 1. On the other hand, these conditions are met, for example, for the kernels K(u) =
∥u∥−a cos2(π∥u∥/2)1(∥u∥ ≤ 1) or K(u) = ∥u∥−a(1− ∥u∥)+ with a > 0.

5.4 Minimax optimal interpolating estimator
In this section, we show that for any β > 0, one can construct an interpolating local polynomial
estimator reaching the minimax rate n− 2β

2β+d on the Hölder class Σ(β,L).
In what follows, we assume that we know a constant L0 such that |f(x)| ≤ L0 for all x ∈ Supp(p).
We denote the class of all such functions f by F0. This assumption is not crucial and can be
avoided at the expense of a more cumbersome estimator construction (see Remark 1 below).
Let fn be an LP(ℓ) estimator of order ℓ = ⌊β⌋. Set µ := L0 ∨max1≤i≤n |Yi| and consider the
truncated estimator

f̄n(x) =
[
fn(x)

]µ
−µ

, (5.9)

where for all y ∈ R and a ≤ b the truncation of y between a and b is defined as [y]ba := (y ∨ a) ∧ b.

Theorem 1. Let Assumptions (A1) and (A2) be satisfied. Let f ∈ Σ(β,L) for β > 0,L > 0, and
|f(x)| ≤ L0 for all x ∈ Supp(p) and a constant L0 > 0. Consider the estimator f̄n defined in (5.9),
where fn is the LP(ℓ) estimator with ℓ = ⌊β⌋, h = αn

− 1
2β+d , for some α > 0, and kernel K.

209



CHAPTER 5. BENIGN OVERFITTING IN ADAPTIVE NONPARAMETRIC REGRESSION

(i) If K is a compactly supported kernel satisfying (5.7) and
∫
K2(u)du <∞ then

E
(
[f̄n(x)− f(x)]2

)
≤ Cn− 2β

2β+d , ∀x ∈ Supp(p), (5.10)

E
(
∥f̄n − f∥2L2

)
≤ Cn− 2β

2β+d , (5.11)

where C > 0 is a constant independent of x and n.
(ii) If, in addition, limu→0K(u) = +∞ and K is continuous on Rd \ {0}, then there exists a
constant c′ > 0 such that, with probability at least 1− c′e−An/c′, where An = n

2β
2β+d , the estimator

f̄n is interpolating, that is, f̄n(Xi) = Yi for i = 1, . . . ,n.

Note that, for the examples of singular kernels given at the end of the previous section, we need
a ∈ (0, d/2) to grant the condition

∫
K2(u)du < ∞ required in Theorem 1. Moreover, Shepard

kernel K(u) = ∥u∥−d does not satisfy the assumptions of Theorem 1.
Remark 1. By modifying the estimator we can drop the assumption that |f(x)| ≤ L0 for all
x ∈ Supp(p). Indeed one can estimate the value max

x∈Supp(p)
|f(x)| by max

x∈Supp(p)
|f̂(x)|, where f̂ is

any estimator of f converging in sup-norm with some rate (for example, with the optimal rate
(log(n)/n)β/(2β+d)). Given such an estimator, it is not hard to check that the argument in the
proof goes through if we replace L0 by the data-driven quantity L̂0 = 2 max

x∈Supp(p)
|f̂(x)|.

Remark 2. Theorem 1 completes the existing literature on LPE in classical setting with non-
singular kernels. To the best of our knowledge, non-asymptotic bounds on the mean squared error
of LPE are missing in the existing literature. The previous work was mainly focused on asymptotic
properties such as convergence in probability or pointwise asymptotic normality, cf. [11, 14, 18, 178].
For binary Y ∈ {0, 1} specific to classification setting, non-asymptotic deviation bounds for LPE
were obtained in [45]. However, the techniques of [45] cannot be extended beyond the case of
bounded Y .
Remark 3. The value max1≤i≤n |Yi| is introduced in the threshold µ only with the aim to preserve
the interpolation property. Inspection of the proof shows that Theorem 1(i) remains valid when
max1≤i≤n |Yi| is dropped from the definition of µ, so that µ = L0. Also, Theorem 1(i) remains valid
if we truncate at L̂0 and not at L0 as explained in Remark 1.
Remark 4. Inspection of the proof shows that Theorem 1 extends to kernels K that are not
necessarily compactly supported. It suffices to assume that the integrals

∫
(1 + ∥u∥β)K(u)du and∫

(1 + ∥u∥2β)K2(u)du are finite.
Remark 5. If kernel K is continuous on Rd the LPE fn and f̄n are continuous functions on
Supp(p).

5.5 Adaptive interpolating estimator
In this section, we will use the following assumption on the noises ξ(Xi).

Assumption (A3). Conditionally on X = x, the random variable ξ(X) is a zero-mean σξ-
subgaussian random variable for all x ∈ Supp(p).
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We propose an adaptive estimator that does not need the knowledge of β,L, achieves the minimax
L2 rate on convergence on classes Σ(β,L) for all L > 0 and β ∈ (0,βmax], where βmax > 0 is an
arbitrary given value, and is interpolating with high probability. Our adaptive estimator is based
on exponentially weighted aggregation, cf. [47]. Consider the sample D = {(X1,Y1), . . . , (Xn,Yn)}.
Assuming without loss of generality that n is even we split D into two independent subsamples
D1 =

{
(X1,Y1), . . . , (Xn

2
,Yn

2
)
}

and D2 =
{
(Xn

2 +1,Yn
2 +1), . . . , (Xn,Yn)

}
. We proceed in two steps.

1. Choose a finite grid (βj)j∈J on the values of β. Let fn,j denote a LP(ℓj) estimator (with
ℓj = ⌊βj⌋) based on the subsample D1 with bandwidth h = αn

− 1
2βj+d , α > 0, and kernel K

satisfying the assumptions of Theorem 1. Construct |J | truncated local polynomial estimators:

f̄n,j(x) =
[
fn,j(x)

]µ
−µ

, j ∈ J . (5.12)

By Theorem 1, each estimator f̄n,j is interpolating over D1 with high probability, and satisfies

sup
f∈Σ(βj ,L)∩F0

E1
[
∥f̄n,j − f∥2L2

]
≤ Cn−

2βj
2βj+d , (5.13)

where E1 denotes the expectation with respect to the distribution of D1.

2. Aggregate the estimators (f̄n,j)j∈J using an exponentially weighted procedure and the sec-
ond subsample D2. Set k = n

2 . For t = 1, . . . , k, consider the vectors of weights θEWt =
(θEWt (j), j ∈ J) with components θEW1 (j) = 1/|J |, ∀j ∈ J , and

θEWt (j) =
exp

(
−η

∑k+t−1
s=k+1

[
f̄n,j(Xs)− Ys

]2)
∑M
j=1 exp

(
−η

∑k+t−1
s=k+1

[
f̄n,j(Xs)− Ys

]2) , j ∈ J , t ≥ 2,

where η =

[
2σ2

ξ + 2
(
L0 + L0 ∨ max

i=1,...,k
|Yi|

)2
]−1

. For each t, we define an estimator, which is

a convex combination of (f̄n,j)j∈J weighted by θEWt :

f̂EWt =
∑
j∈J

θEWt (j)f̄n,j ,

and consider the averaged aggregate

f̃k =
1
k

k∑
t=1

f̂EWt . (5.14)

As a convex combination of estimators (f̄n,j)j∈J interpolating over D1, the estimator f̃k is also
interpolating over D1, but not over D2. We therefore introduce the estimator g̃k obtained in the
same way as f̃k by interchanging D1 and D2. Thus, g̃k is interpolating over D2. Next, we define an
estimator interpolating over D1 ∪D2 by combining f̃k and g̃k as follows.
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For any x ∈ Rd and any set A ⊆ Rd, denote by d(x,A) = infy∈A ∥x− y∥ the distance between
x and A. Let λ : Rd → [0, 1] be any continuous function such that λ(x) → 0 as d(x,D2) → 0
and λ(x) → 1 as d(x,D1) → 0. For example, take λ(x) = 2

π arctan
(
d(x,D2)
d(x,D1)

)
with 1

0 = ∞ and
arctan(∞) = 1 by convention. We define our final estimator as

f̂n(x) = λ(x)f̃k(x) + (1− λ(x))g̃k(x). (5.15)

Theorem 2. Let n ≥ 3, βmax > 1. Consider the grid points βj defined as follows:

βj =

(
1 + 1

logn

)j
, j = −M , . . . ,Mmax,

where M = 2
⌊
log(n) log log(n)

⌋
and Mmax = M ∧ ⌊log(n) log(βmax)⌋. Let Assumptions (A1) and

(A3) be satisfied. If kernel K satisfies the assumptions of Theorem 1(i), then for any β ∈ (0,βmax]
and L > 0 for the estimator f̂n defined by (5.15) we have

sup
f∈Σ(β,L)∩F0

E
[
∥f̂n − f∥2L2

]
≤ Cn− 2β

2β+d , (5.16)

where C > 0 is a positive constant depending only on β,L,L0, d,βmax,σξ,K, pmax, pmin and α.
If, in addition, kernel K satisfies the assumptions of Theorem 1(ii), then the estimator f̂n is inter-
polating with probability at least 1− c′′ exp(−n

2
2+d/c′′), where c′′ is a positive constant depending

only on L,L0, d,βmax,K, pmax, pmin and α.

Note that one can get rid of the dependence of the estimators on L0 and drop the intersection with
F0 in (5.16). It can be achieved by using, for each estimator f̄n,j , a data-driven threshold instead
of L0 as explained in Remark 1.
If kernel K is continuous on Rd the adaptive estimator f̂n is a continuous function on Supp(p).
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Appendix
Proof of Lemma 1. The result is straightforward if there exists an integer ℓ ≥ 0 such that ℓ < β′ ≤
β ≤ ℓ+ 1. Indeed, for any integer ℓ ≥ 0,

ℓ < β′ ≤ β ≤ ℓ+ 1 =⇒ Σ(β,L) ⊆ Σ(β′,L). (17)

Thus, it remains to consider the case ℓ < β′ ≤ ℓ+ 1 < β for an integer ℓ. Handling this case will
be based on the following embedding:

Σ(β,L) ⊆ Σ(ℓ′, 2L), ∀ℓ′ ∈ N such that ℓ′ < β. (18)

We now prove (18). Indeed, let f ∈ Σ(β,L) and let ℓ′ be an integer less than β. Then, in particular,
max

0≤s≤ℓ′
sup
x∈Bd
∥f (s)(x)∥ ≤ L. Consider x, y ∈ Bd and h = y − x. Denote by hi the ith component of

h and by ei the ith canonical basis vector in Rd. Set k = ℓ′ − 1. Then for any multi-indices
m1, . . . ,mk ∈ Nd we have

Dm1+···+mkf(y)−Dm1+···+mkf(x) =
∫ 1

0

〈
∇Dm1+···+mkf(x+ th),h

〉
dt

=
∫ 1

0

d∑
i=1

Dm1+···+mk+eif(x+ th)hidt

=
d∑
i=1

∫ 1

0
Dm1+···+mk+eif(x+ th)dt hei .

Writing for brevity Gm1,...,mk,ei(x,h) =
∫ 1

0 D
m1+···+mk+eif(x+ th)dt we obtain

∥f (k)(y)− f (k)(x)∥ = sup
∥uj∥≤1,
j∈[k]

∣∣∣∣ ∑
|mj |=1,∀j∈[k]

d∑
i=1

Gm1,...,mk,ei(x,h) heium1
1 . . . umkk

∣∣∣∣
= ∥h∥ sup

∥uj∥≤1,
j∈[k]

∣∣∣∣ ∑
|mj |=1,∀j∈[k]

d∑
i=1

Gm1,...,mk,ei(x,h)
(

h

∥h∥

)ei
um1

1 . . . umkk

∣∣∣∣
≤ ∥h∥ sup

∥uj∥≤1,
j∈[k+1]

∣∣∣∣ ∑
|mj |=1,∀j∈[k+1]

∫ 1

0
Dm1+···+mk+1f(x+ th)dt um1

1 . . . u
mk+1
k+1

∣∣∣∣
≤ ∥h∥

∫ 1

0
sup

∥uj∥≤1,
j∈[k+1]

∣∣∣f (k+1)(x+ th)[u1, . . . ,uk+1]
∣∣∣dt

≤ ∥h∥ sup
z∈Bd
∥f (k+1)(z)∥∗ ≤ L∥x− y∥,

which, together with bound max
0≤s≤ℓ′−1

sup
x∈Bd
∥f (s)(x)∥ ≤ L implies that f ∈ Σ(ℓ′, 2L). Thus, we have

proved (18).

213



CHAPTER 5. BENIGN OVERFITTING IN ADAPTIVE NONPARAMETRIC REGRESSION

It follows from (18) that if ℓ < β′ ≤ ℓ + 1 < β for an integer ℓ then Σ(β,L) ⊆ Σ(ℓ + 1, 2L),
while taking β = ℓ+ 1 in (17) implies that Σ(ℓ+ 1, 2L) ⊆ Σ(β′, 2L). This proves the lemma when
ℓ < β′ ≤ ℓ+ 1 < β for an integer ℓ.

Proof of Lemma 2. The result is clear for β ≤ 1. Assume that β > 1 and fix some x, y ∈ Bd. By
Taylor expansion, there exists c ∈ (0, 1) such that

f(x) =
∑

0≤|k|≤ℓ−1

1
k!
Dkf(y)(x−y)k +

∑
|k|=ℓ

1
k!
Dkf(y+c(x−y))(x−y)k,

and ∣∣∣∣∣∣∣f(x)−
∑

|k|≤ℓ

1
k!
Dkf(y)(x−y)k

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
∑

|k|=ℓ

1
k!

[
Dkf

(
y+c(x−y)

)
−Dkf(y)

]
(x−y)k

∣∣∣∣∣∣∣ .
By a standard combinatorial argument, it is not hard to check that, for any h, z ∈ Rd,

f (k)(z)[h]k : =
∑

|m1|=...=|mℓ|=1
Dm1+...+mℓf(z)hm1+...+mℓ =

∑
|k|=ℓ

ℓ!
k!
Dkf(z)hk .

It follows that ∣∣∣∣∣∣∣
∑

|k|=ℓ

1
k!

[
Dkf

(
y+c(x−y)

)
−Dkf(y)

]
(x−y)k

∣∣∣∣∣∣∣ (19)

=
1
ℓ!

∣∣∣∣f (ℓ)(y+c(x−y))[x−y]ℓ − f (ℓ)(y)[x−y]ℓ∣∣∣∣
≤ 1
ℓ!

∥∥∥∥f (ℓ)(y+c(x−y))− f (ℓ)(y)∥∥∥∥
∗
∥x−y∥ℓ

≤ L

ℓ!
∥x−y∥ℓ∥c(x−y)∥β−l ≤ L

ℓ!
∥x−y∥β.

Proof of Lemma 3. In this proof, we fix i ∈ [n], and our aim is to prove that limx→Xi fn(x) = Yi.
Let V be the neighborhood of Xi where (5.8) holds. Since X1, . . . ,Xn are distinct, we assume
w.l.o.g. that V does not contain (Xj)j ̸=i. Due to conditions (5.7) and (5.8), we have that Bnx ≻ 0
for all x in V− := V \ {Xi}. Thus, for all x ∈ V− the vector θ̂n(x) is the unique solution of (5.2),
and fn(x) is given by (5.3):

θ̂n(x) = argmin
θ∈RCℓ,d

n∑
i=1

Yi − θ⊤U

(
Xi − x
h

)2

K

(
Xi − x
h

)
,

fn(x) = U⊤(0)θ̂n(x).
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Define gi(x) =

(
Yi − θ̂n(x)⊤U

(
Xi−x
h

))2
. First, we prove by contradiction that lim

x→Xi
gi(x) = 0

for any i ∈ [n]. Indeed, suppose that limx→Xi gi(x) ̸= 0. Then, there is a sequence (xk)k in Rd

converging to Xi as k → ∞ such that limk→∞ gi(xk) = +∞ or limk→∞ gi(xk) = const > 0. In
both cases,

lim
k→∞

n∑
j=1

gj(xk)K

(
Xj − xk

h

)
= +∞ (20)

since the kernel K has a singularity at 0. On the other hand, the definition of θ̂n(xk) implies that,
for any k and any θ∗ ∈ RCℓ,d ,

n∑
j=1

gj(xk)K

(
Xj − xk

h

)
≤

n∑
j=1

Yj − θ⊤
∗ U

(
Xj − xk

h

)2

K

(
Xj − xk

h

)
.

In particular, for θ⊤
∗ = (Yi 0 . . . 0) we have

n∑
j=1

Yj − θ⊤
∗ U

(
Xj − xk

h

)2

K

(
Xj − xk

h

)
=

n∑
j=1

(Yj − Yi)2K

(
Xj − xk

h

)

=
∑
j ̸=i

(Yj − Yi)2K

(
Xj − xk

h

)

→
k→+∞

∑
j ̸=i

(Yj − Yi)2K

(
Xj −Xi

h

)
< +∞,

which is in contradiction with (20). Therefore, for any i ∈ [n] we have lim
x→Xi

gi(x) = 0.
A similar argument yields that lim sup

x→Xi

gj(x) < +∞ for any j ̸= i. Indeed, if for some j ̸= i this

relation does not hold then there is a sequence (xk)k in Rd converging to Xi as k →∞ such that
limk→∞ gj(xk) = +∞. It implies (20), which is not possible as shown above.
Next, we prove that ∥θ̂n(x)∥ is bounded for all x in a neighborhood of Xi. Since lim

x→Xi
gi(x) = 0,

and for any j ̸= i we have lim sup
x→Xi

gj(x) < +∞ the values gj(x) are bounded for all j ∈ [n] and

all x in a neighborhood of Xi. We will further denote this neighborhood by V ′. It follows that
φj(x) = θ̂n(x)⊤U

(
Xj−x
h

)
, j = 1, . . . ,n, are bounded for x ∈ V ′ and thus the sum ∑n

j=1 φ
2
j (x) is

bounded as well. On the other hand, by assumption (5.8), for all x ∈ V−,

n∑
j=1

φ2
j (x) ≥

n∑
j=1

θ̂n(x)
⊤U

(
Xj − x
h

)
U⊤

(
Xj − x
h

)
1

∥∥∥∥∥Xj − x
h

∥∥∥∥∥ ≤ ∆

 θ̂n(x)
≥ λ1∥θ̂n(x)∥2,

where λ1 > 0. It follows that ∥θ̂n(x)∥ is bounded for all x ∈ V ′ ∩ V−.
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Let θ̂n,(1)(x) = fn(x) denote the first component of θ̂n(x) and θ̂n,(2)(x) the vector of its remaining
Cℓ,d − 1 components, so that θ̂n(x)⊤ =

(
θ̂n,(1)(x), θ̂n,(2)(x)

⊤
)
. Recall that the first component of

U(u) is equal to 1 for all u ∈ Rd. Denote by U(2)(u) the vector of its remaining Cℓ,d− 1 components,
so that U(u)⊤ =

(
1,U(2)(u)

⊤
)
. With this notation, the relation lim

x→Xi
gi(x) = 0 proved above can

be written as:

gi(x) =

Yi − θ̂n,(1)(x)− θ̂n,(2)(x)
⊤U(2)

(
Xi − x
h

)2

→
x→Xi

0.

Since ∥θ̂n(x)∥ is bounded for x ∈ V ′ ∩ V− we get that |θ̂n,(1)(x)| and ∥θ̂n,(2)(x)∥ are also bounded
for x ∈ V ′ ∩V−. The definition of U(u) implies the convergence lim

x→Xi
∥U(2)

(
Xi−x
h

)
∥ = 0. It follows

that

θ̂n,(2)(x)
⊤U(2)

(
Xi − x
h

)
→

x→Xi
0

and therefore

θ̂n,(1)(x) →
x→Xi

Yi,

which concludes the proof since θ̂n,(1)(x) = fn(x).

Proof of Lemma 4. We prove only part (i) of the lemma since part (ii) is its immediate consequence.
We have

Bnx =
1
nhd

n∑
i=1

U

(
Xi − x
h

)
U⊤

(
Xi − x
h

)
1
(
∥Xi − x∥

∆
≤ h

)
and, for any λ0 > 0,

P
(

inf
x∈Supp(p)

λmin(Bnx) < λ0

)
= P

(
inf

x∈Supp(p)
inf

∥v∥=1
v⊤Bnxv < λ0

)

≤ P

 inf
x∈Supp(p)

inf
∥v∥=1

v⊤B(x)v− sup
x∈Supp(p)

∥Bnx−B(x)∥∞ < λ0

 (21)

where B(x) := E(Bnx). Set S(x,h, ∆) =
{
u ∈ Bd(0, ∆) : x+ uh ∈ Supp(p)

}
. Then we have

v⊤B(x)v =
1
hd

∫ [
v⊤U

(
z − x
h

)]2

1
(∥∥∥∥z − xh

∥∥∥∥ ≤ ∆

)
p(z)dz

≥ pminv
⊤
[∫

S(x,h,∆)
U(u)U (u)⊤du

]
v
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≥ pminv
⊤
[∫

S(x,α,∆)
U(u)U (u)⊤du

]
v,

where for the last inequality we used the fact that S(x,α, ∆) ⊂ S(x,h, ∆) since h ≤ α and Supp(p)
is a convex set. Notice that S(x,α, ∆) is also a convex set and it is not reduced to one point x as
Supp(p) is a convex set with positive Lebesgue measure. Thus, S(x,α, ∆) is of infinite cardinality
for any x ∈ Supp(p).
Denote by Sd(0, 1) the unit sphere in Rd centered at 0. Note that, for fixed ∆ and α, the function Supp p× Sd(0, 1) −→ R

(x, v) 7→ v⊤
[∫
S(x,α,∆) U (u)U (u)

⊤du
]
v

is continuous and defined on a compact set. Therefore, it attains its minimum at some (x0, v0),
where x0 ∈ Supp(p) and ∥v0∥ = 1. We argue now that the value of this minimum is positive.
Indeed, it is clearly non-negative, and if it were 0 we would have:

0 = v⊤
0 U(u) =

∑
|k|≤ℓ

v0(k)
uk

k!
, ∀u ∈ S(x0,α, ∆). (22)

As observed above, S(x0,α, ∆) is a set of infinite cardinality. On the other hand, the expression in
(22) is a polynomial in u, so that for v0 ̸= 0 it can vanish only in a finite number of points. Thus,
(22) is impossible. It follows that

λ1(ℓ) := min
v∈Sd(0,1),x∈Supp(p)

v⊤
[∫

S(x,α,∆)
U(u)U(u)⊤du

]
v > 0.

Next, note that the vector U(u) = Uℓ(u) depends on ℓ, and that for ℓ ≤ ℓ′ and any fixed x, the
matrix

∫
S(x,α,∆) Uℓ(u)Uℓ(u)

⊤du is an extraction of the matrix
∫
S(x,α,∆) Uℓ′(u)Uℓ′(u)

⊤du. Hence,
the smallest eigenvalue of the former matrix is necessarily not less than that of the latter. Thus,
λ1(ℓ) ≥ λ1(ℓ′) for ℓ ≤ ℓ′.
Setting λ0 = λ0(ℓ) := pminλ1(ℓ)/2 and using (21) we find:

P
(

inf
x∈Supp(p)

λmin(Bnx) < λ0

)
≤ P

 sup
x∈Supp(p)

∥Bnx −B(x)∥∞ > λ0

 . (23)

It remains now to bound the probability on the right hand side of (23).
By Assumption (A2), the convex compact set Supp(p) is included in Bd = Bd(0, 1). For ε > 0, let
{x1, . . . ,xN} ⊂ BNd be the minimal ε-net on Bd in the Euclidean metric. Then we have:

sup
x∈Supp(p)

∥B(x)−Bnx∥∞ ≤ sup
x∈Bd

min
1≤k≤N

∥B(x)−B(xk)∥∞

+ max
1≤k≤N

∥B(xk)−Bnxk∥∞ + sup
x,x′∈Bd,

∥x−x′∥≤ε

∥Bnx −Bnx′∥∞.
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Thus,

P

 sup
x∈Supp(p)

∥Bnx −B(x)∥∞ > λ0

 ≤ P1 + P2 + P3, where (24)

P1 = P
(

sup
x∈Bd

min
1≤k≤N

∥B(x)−B(xk)∥∞ >
λ0
3

)
,

P2 = P
(

max
1≤k≤N

∥B(xk)−Bnxk∥∞ >
λ0
3

)
,

P3 = P

 sup
x,x′∈Bd:

∥x−x′∥≤ε

∥Bnx −Bnx′∥∞ >
λ0
3

.

In the rest of the proof, we control the terms P1,P2,P3.
Control of P2. Since all norms in the space of Cℓ,d × Cℓ,d matrices are equivalent there exists a
constant c1 > 0 depending only on ℓ, d such that, for all k ∈ {1, . . . ,N},

∥B(xk)−Bnxk∥∞ ≤ c1 max
1≤i,j≤Cℓ,d

|bnxk(i, j)− bxk(i, j)|

where bnxk(i, j) and bxk(i, j) are the elements of Bnxk and B(xk), respectively. Then, for any
k ∈ {1, . . . ,N},

P
(
∥B(xk)−Bnxk∥∞ >

λ0
3

)
≤ C2

ℓ,d max
1≤i,j≤Cℓ,d

P
(
|bnxk(i, j)− bxk(i, j)| >

λ0
3c1

)
.

We recall that bxk(i, j) = E
[
bnxk(i, j)

]
. Setting s = s(i) and r = s(j) we have

bnxk(i, j) =
1
nhd

n∑
m=1

(Xm − xk)s

hss!
(Xm − xk)r

hrr!
1

∥∥∥∥∥Xm − xk
h

∥∥∥∥∥ ≤ ∆

 .

This is a sum of n i.i.d. random variables, each of which is bounded in absolute value by C
nhd

and has variance not exceeding C
n2hd

, where C > 0 is a constant depending only on ℓ, d, ∆. By
Bernstein’s inequality,

P
(
|bnxk(i, j)− bxk(i, j)| >

λ0
3c1

)
≤ 2 exp(−c2nh

d),

where c2 > 0 only depends on ℓ, d, ∆ and not on n, k, i, j. It follows from the above inequalities and
the union bound that

P2 ≤ 2NC2
ℓ,d exp(−c2nh

d). (25)
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Control of P3. For any x,x′ ∈ Bd,

Bnx −Bnx′ =
1
nhd

n∑
i=1

[
U

(
Xi − x
h

)
U⊤

(
Xi − x
h

)
1

∥∥∥∥∥Xi − x
h

∥∥∥∥∥ ≤ ∆

−
U

(
Xi − x′

h

)
U⊤

(
Xi − x′

h

)
1

∥∥∥∥∥Xi − x′

h

∥∥∥∥∥ ≤ ∆

].
For any u ∈ Rd consider the matrix

V (u) = U(u)U⊤(u)1{∥u∥ ≤ ∆}. (26)

Notice that U(u) ∈ RCℓ,d is Lipschitz continuous in u on the ball Bd(0, ∆) since the components of
vector U(u) are polynomials in u. Thus, there exists a constant L̃ > 0 depending only on ℓ and d
such that for any u,u′ ∈ Rd, if either ∥u∥ ≤ ∆, ∥u′∥ ≤ ∆ or ∥u∥ > ∆, ∥u′∥ > ∆, then∥∥∥V (u)− V (u′)

∥∥∥
∞
≤ L̃∥u− u′∥,

and if (u,u′) belongs to the set

∆̃ := {(u,u′) : ∥u∥ ≤ ∆, ∥u′∥ > ∆} ∪ {(u,u′) : ∥u∥ > ∆, ∥u′∥ ≤ ∆}

then ∥∥∥V (u)− V (u′)
∥∥∥

∞
≤ L̃,

taking L̃ ≥ max
∥u∥≤∆

∥∥∥U(u)U(u)⊤
∥∥∥

∞
. It follows that

∥∥∥V (u)− V (u′)
∥∥∥

∞
≤ L̃

{
∥u− u′∥+ 1((u,u′) ∈ ∆̃)

}
, (27)

which implies the bound

∥Bnx −Bnx′∥∞ ≤
L̃

hd+1 ∥x− x
′∥+ L̃

nhd
Card

{
i ∈ [n] : Xi ∈ ∆̃(x,x′,h∆)

}
,

where we denote by ∆̃(x,x′,h∆) the symmetric difference Bd(x,h∆)△Bd(x′,h∆). Thus,

sup
x,x′∈Bd:

∥x−x′∥≤ε

∥Bnx −Bnx′∥∞ ≤
L̃ε

hd+1 +
L̃

nhd
sup

x,x′∈Bd:
∥x−x′∥≤ε

n∑
i=1

1
(
Xi ∈ ∆̃(x,x′,h∆)

)
, (28)

If ∥x− x′∥ ≤ ε then

∆̃(x,x′,h∆) ⊆ {z : h∆ < ∥z − x∥ ≤ h∆ + ε} ∪ {z : h∆ < ∥z − x′∥ ≤ h∆ + ε}.
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Therefore, for ∥x− x′∥ ≤ ε we have
∣∣∣∆̃(x,x′,h∆)

∣∣∣ ≤ C∗h
d−1ε, where we denote by |S| the Lebesgue

measure of a measurable set S ⊂ Rd, and C∗ > 0 is a constant depending only on ∆ and d. Set
ε = c0hd+1, where the constant c0 satisfies 0 < c0 ≤

λ0

6L̃
. Then for ∥x− x′∥ ≤ ε we get P(X1 ∈

∆(x,x′,h∆)) ≤ pmaxC∗c0h2d. Choose c0 small enough (and depending only on ℓ, d, pminpmax, ∆) to
satisfy pmaxC∗c0αd ≤

λ0

12L̃
. Consider the random event

A =

{
sup

x,x′∈Bd:
∥x−x′∥≤ε

n∑
i=1

1
(
Xi ∈ ∆̃(x,x′,h∆)

)
≤ A

}
,

where A =
λ0

6L̃
nhd. Due to the choice of c0 and the fact that h ≤ α the bound P(X1 ∈

∆(x,x′,h∆)) ≤ A/2 holds whenever ∥x− x′∥ ≤ ε. Hence,

P
(
A
)
≤ P

{
sup

x,x′∈Bd:
∥x−x′∥≤ε

∣∣∣∣ 1n
n∑
i=1

1
(
Xi ∈ ∆̃(x,x′,h∆)

)
−P

(
X1 ∈ ∆(x,x′,h∆)

)∣∣∣∣ ≥ A/2
}

. (29)

The class of all balls in Rd has a VC-dimension at most d+ 2, cf. Corollary 13.2 in [177]. Con-
sequently, the class of all intersections of two balls in Rd has a VC-dimension at most Cd where
C > 0 is an absolute constant [50]. This allows us to apply the Vapnik-Chervonenkis inequality to
bound the probability in (29). Indeed, we can use the decomposition

1
(
Xi ∈ ∆̃(x,x′,h∆)

)
= 1

(
Xi ∈ Bd(x,h∆)

)
+ 1

(
Xi ∈ Bd(x′,h∆)

)
− 2 · 1

(
Xi ∈ Bd(x,h∆) ∩Bd(x′,h∆)

)
(30)

and bound from above the probability in (29) by the three probabilities corresponding to the three
terms on the right hand side of (30). Applying the Vapnik-Chervonenkis inequality [177, Theorem
12.5] to each of these probabilities we get

P
(
A
)
≤ c3n

c3 exp(−nA2/128) ≤ c3n
c3 exp(−c4n

3h2d),

where c3 > 0, c4 > 0 are constants depending only on d, ℓ, p(·), ∆. On the other hand, due to (28)
and the definitions of ε and A, on the event A we have

sup
x,x′∈Bd:

∥x−x′∥≤ε

∥Bnx −Bnx′∥∞ ≤
λ0
3 .

Thus, we have proved that
P3 ≤ c3n

c3 exp(−c4n
3h2d). (31)
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Control of P1. Fix x ∈ Bd and let k ∈ {1, . . . ,N} be such that ∥x− xk∥ ≤ ε. Using (27) we obtain

∥B(x)−B(xk)∥∞ ≤
1
hd

∫
Rd

∥∥∥∥∥V
(
z − x
h

)
− V

(
z − xk
h

)∥∥∥∥∥
∞
p(z)dz

≤ L̃

hd

∫
Rd

[
ϵ

h
+ 1(z ∈ ∆̃

(
x,xk,h∆)

)]
p(z)dz

≤ L̃ε
(

1
hd+1 +

C∗pmax
h

)
(since

∣∣∣∆̃(x,xk,h∆)
∣∣∣ ≤ C∗h

d−1ε)

= L̃c0
(
1 +C∗pmaxh

d
)
≤ L̃c0

(
1 +C∗pmaxα

d
)
<
λ0
3

provided that c0 is chosen small enough (depending only on ℓ, d, p(·), ∆,α). Thus, P1 = 0 under
this choice of c0. Combining this remark with (23), (25) and (31) we conclude that

P
(

inf
x∈Supp(p)

λmin(Bnx) < λ0

)
≤ 2NC2

ℓ,d exp(−c2nh
d) + c3n

c3 exp(−c4n
3h2d).

Recall that the cardinality N of the minimal ε-net on the ball Bd = Bd(0, 1) satisfies N ≤
(

2
ε + 1

)d
.

The result of the lemma now follows by observing that under our choice of ε we have N ≤ Ch−d2−d,
where the constant C > 0 depends only on ℓ, d, p(·), ∆,α.

In the proof of Theorem 1 below, we will use the fact that an LP(ℓ) estimator reproduces the
polynomials of degree ≤ ℓ for all x ∈ Rd such that Bnx ≻ 0. We state this property in the next
proposition. The proof is omitted. It follows the same lines as the proof of Proposition 1.12 in [188]
dealing with the case d = 1.
Prop .1. Let x ∈ Rd such that Bnx ≻ 0 and let Q be a polynomial of degree ≤ ℓ. Then the LP(ℓ)
weights Wni are such that

n∑
i=1

Q(Xi)Wni(x) = Q(x).

In particular,
n∑
i=1

Wni(x) = 1 and
n∑
i=1

(Xi − x)kWni(x) = 0 for |k| ≤ ℓ. (32)

Proof of Theorem 1. Part (ii) of the theorem follows from Corollary 1. Also, note that (5.11) is an
immediate consequence of (5.10) and Assumption (A2). Therefore, we need only to prove (5.10).
Fix x ∈ Supp(p) and define the random events E0 =

{
x ̸∈ {X1, . . . ,Xn}

}
and

E =
{
λmin(Bnx) ≥ λ′

0
}
∩ E0,
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where λ′
0 = λ′

0(ℓ) is a constant from Lemma 4 that does not depend on n and x. From Assumption
(A2) we get that P(E0) = 1. This and Lemma 4 with our choice of h yield:

P(E) ≤ c′e−An/c′ , (33)

where An = n
2β

2β+d and c′ > 0 does not depend on x and n.
Since |f̄n(x)| ≤ µ = max1≤i≤n |Yi| ∨L0 we obtain

E
([
f̄n(x)− f(x)

]2)
≤ E

( [
f̄n(x)− f(x)

]2
1(E)

)
+ E

(
[L0 + µ]21(E)

)
≤ E

( [
fn(x)− f(x)

]2 1(E)
)
+ E

(
[L0 + µ]2+δ

) 2
2+δP(E)

δ
2+δ

where we have used Hölder inequality and the fact that |f̄n(x) − f(x)| ≤ |fn(x) − f(x)| for all
x ∈ Supp(p). Next,

E
(
[L0 + µ]2+δ

)
≤ E

(
[2L0 + max

1≤i≤n
|ξ(Xi)|]2+δ

)
≤ C

[
1 + nE

(
|ξ(X1)|2+δ

)]
.

Using this inequality and Assumption (A1) we get

E
([
f̄n(x)− f(x)

]2)
≤ E

( [
fn(x)− f(x)

]2 1(E)
)
+Cn

2
2+δP(E)

δ
2+δ . (34)

We now bound the main term E
( [
fn(x)− f(x)

]2 1(E)
)

on the right hand side of (34). Writing
for brevity E[·|X1, . . . ,Xn] = Ẽ[·] we have

E
([
fn(x)− f(x)

]2 1(E)
)
≤ 2E

((
fn(x)− Ẽ[fn(x)]

)2
1(E)

)
+ 2E

((
Ẽ[fn(x)]− f(x)

)2
1(E)

)
. (35)

We analyze separately the two terms (bias and variance terms) on the right hand side of (35).
Bound on the variance term. On the event E we have

Ẽ[fn(x)] =
n∑
i=1

f(Xi)Wni(x),

where
Wni(x) =

1
nhd

U⊤(0)B−1
nxU

(
Xi − x
h

)
K

(
Xi − x
h

)
.

Thus, using Assumption (A1) the variance term can be bounded as follows:

E
((
fn(x)− Ẽ[fn(x)]

)2
1(E)

)
= E


 n∑
i=1

ξ(Xi)Wni(x)

2

1(E)


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= E

 n∑
i=1

E
[
ξ2(Xi)

∣∣∣Xi

]
W 2
ni(x)1(E)

 ≤ Cσ2(x),

where

σ2(x) = E

 n∑
i=1

W 2
ni(x)1(E)

 .

In what follows, we assume w.l.o.g. that Supp(K) ⊆ Bd. On the event E , we have ∥B−1
nx v∥ ≤ ∥v∥/λ′

0
for any v ∈ RCℓ,d . This inequality and the fact that ∥U(0)∥ = 1 imply

|Wni(x)| ≤
1
nhd

∥∥∥∥∥∥B−1
nxU

(
Xi − x
h

)
K

(
Xi − x
h

)∥∥∥∥∥∥
≤ 1
nhdλ′

0

∥∥∥∥∥∥U
(
Xi − x
h

)∥∥∥∥∥∥K
(
Xi − x
h

)

≤ 1
nhdλ′

0
K

(
Xi − x
h

)√√√√ ∑
0≤|s|≤ℓ

1
(s!)2 (since Supp(K) ⊆ Bd)

≤ c5
nhd

K

(
Xi − x
h

)
=: ζi,

where c5 > 0 is a constant that does not depend on n and x. Using Assumption (A2) and the
compactness of the support of K we get

E(ζ2
1 ) ≤

c2
5pmax
n2hd

∫
K2(u)du ≤ C

n2hd
, (36)

E(ζ1) ≤
c5pmax
n

∫
K(u)du ≤ C

n

(∫
K2(u)du

)1/2
≤ C

n
. (37)

It follows that

σ2(x) ≤ E

 n∑
i=1

ζ2
i

 ≤ C

nhd

and

E
((
fn(x)− Ẽ[fn(x)]

)2
1(E)

)
≤ C

nhd
. (38)

Bound on the bias term. On the event E we have

Ẽ[fn(x)]− f(x) =
n∑
i=1

f(Xi)Wni(x)− f(x)
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=
n∑
i=1

[f(Xi)− f(x)]Wni(x),

so that the bias term in (35) can be written as

E
((

Ẽ[fn(x)]− f(x)
)2

1(E)
)
= E


 n∑
i=1

[f(Xi)− f(x)]Wni(x)

2

1(E)

 =: b2(x).

Using (32) and the Taylor expansion of f we get that for some τi ∈ [0, 1],
n∑
i=1

[f(Xi)− f(x)]Wni(x) =
n∑
i=1

∑
|k|=ℓ

Dkf(x+ τi(Xi − x))
k!

(Xi − x)kWni(x)

=
n∑
i=1

∑
|k|=ℓ

(Dkf(x+ τi(Xi − x))−Dkf(x)

k!
(Xi − x)kWni(x).

Since f belongs to Σ(β,L) we can apply (19), which yields

b2(x) ≤ E


 n∑
i=1

L

ℓ!
∥Xi−x∥β|Wni(x)|

2

1(E)


= E


 n∑
i=1

L

ℓ!
∥Xi−x∥β |Wni(x)|1(∥Xi − x∥≤h)

2

1(E)

 (as supp(K) ⊂ Bd)

≤ E


 n∑
i=1

L

ℓ!
hβ|Wni(x)|

2

1(E)

 .

As |Wni(x)| ≤ ζi we further get

b2(x) ≤ Ch2βE


 n∑
i=1

ζi

2
 = Ch2β

 n∑
i=1

E(ζ2
i ) +

n∑
i ̸=j

E(ζi)E(ζj)


= Ch2β

[
nE(ζ2

1 ) + n(n− 1)E(ζ1)
2
]
≤ Ch2β,

where the last inequality follows from (36), (37) and the fact that h = αn
− 1

2β+d . Combining this
bound on b2(x) with (33), (34), (35) and (38) we finally obtain

E
([
f̄n(x)− f(x)

]2)
≤ C

( 1
nhd

+ h2β + n
2

2+δ e−na/C
)

,

where a = 2β
2β+d . Since h = αn

− 1
2β+d the desired bound (5.10) follows.
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Proof of Theorem 2. If K satisfies the assumptions of Theorem 1(ii) then each estimator f̄n,j is
interpolating on D1 with probability at least

1−C exp(−n−2βj/(2βj+d)/C) ≥ 1−C exp(−n− 2
2+d/C)

if βj > 1, and with probability 1 if 0 < βj ≤ 1. Hence all of them are simultaneously interpolating
with probability at least

1−CMmax exp(−n− 2
2+d/C) ≥ 1−C ′ exp(−n− 2

2+d/C ′),

and the same holds true for their convex combination f̃k. Analogously, the estimator g̃k is inter-
polating on D2 with the same probability. These remarks and the definition of f̂n in (5.15) ensure
that f̂n is interpolating on the whole sample D with probability at least 1− 2C ′ exp(−n− 2

2+d/C ′).
We now prove the bound (5.16). First, we show that such a bound holds for the estimator f̃k.
Corollary 5.5 in [47] with b0 = +∞, L̃ = L0 +L0 ∨ max

i=1,...,k
|Yi|, and η =

[
2σ2

ξ + 2L̃2
]−1

implies that

E2
[
∥f̃k − f∥2L2

]
≤ min

−M≤j≤Mmax
∥f̄n,j − f∥2L2 +C(1 + max

i=1,...,k
Y 2
i )

log(2M + 1)
n

,

where we denote by E2 the expectation over the distribution of the sample D2 and we have used
the fact that Mmax ≤ M . Taking the expectations over D1 on both sides and using the fact that
the noise is subgaussian we further get

E1E2
[
∥f̃k − f∥2L2

]
≤ min

−M≤j≤Mmax
E1
[
∥f̄n,j − f∥2L2

]
+C

(logn)2 log logn
n

. (39)

Assume now that β ∈ [βj ,βj+1] for some j ∈ {−M , . . . ,Mmax−1}. Lemma 1 implies that Σ(β,L) ⊆
Σ(βj , 2L). Hence, using (5.13), we obtain:

sup
f∈Σ(β,L)∩F0

E1
[
∥f̄n,j − f∥2L2

]
≤ sup

f∈Σ(βj ,2L)∩F0

E1
[
∥f̄n,j − f∥2L2

]
≤ Cn−

2βj
2βj+d . (40)

Combining (39) and (40) we get that, for β ∈ [βj ,βj+1],

sup
f∈Σ(β,L)∩F0

E1E2
[
∥f̃k − f∥2L2

]
≤ Cn−

2βj
2βj+d . (41)

Notice that if β ∈ [βj ,βj+1] for some j ∈ {−M , . . . ,Mmax − 1} then

n
−

2βj
2βj+d ≤ en− 2β

2β+d .

225



CHAPTER 5. BENIGN OVERFITTING IN ADAPTIVE NONPARAMETRIC REGRESSION

Indeed,

β

2β + d
− βj

2βj + d
≤ βj+1 − βj

(2β + d)(2βj + d)
=

βj
(2βj + d)(2β + d) logn

≤ β

(2βj + d)(2β + d) logn ≤
1

2 logn .

The case β ∈ [βMmax ,βmax] is treated analogously. Therefore, by equation (41), for each β ∈
[β−M ,βmax] there exists a constant C > 0 such that

sup
f∈Σ(β,L)∩F0

E
[
∥f̃k − f∥2L2

]
≤ Cn− 2β

2β+d . (42)

Next, note that for any fixed β > 0 it is only possible to have β < β−M for a finite number n0(β)
of integers n (n ≤ n0(β)). For such values of n the estimation error of f̃k is bounded by a constant
depending only on β, d and L0:

E
[
∥f̃k − f∥2L2

]
≤ 4E1

[
max

i=1,...,n0(β)/2
Y 2
i

]
+ 2L2

0 ≤ C(log(n0(β)) + L2
0).

Consequently, (42) also holds for 0 < β < β−M (and thus for all β ∈ (0,βmax]) if we take the
constant C > 0 in (42) large enough.
By the same argument, we deduce that the bound (42) holds for the estimator g̃k. Combining both
bounds and using the fact that function λ(·) appearing in (5.15) takes values in [0, 1] we get the
desired bound (5.16) for the final estimator f̂n.
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Titre : Problèmes d’inférence non-paramétrique et en grande dimension
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Résumé : Dans cette thèse, nous traitons les su-
jets suivants: tests minimax locaux, estimation sous
contraintes combinées de robustesse et de confiden-
tialité locale différentielle, estimation adaptative en
régression non-paramétrique avec benign overfitting.
Nous étudions en premier lieu le problème de test mi-
nimax d’adéquation pour des lois discrètes et des lois
à densité Hölder-régulières. Le problème consiste à
tester l’égalité à une loi connue contre une alternative
composée de distributions séparées de l’hypothèse
nulle au sens d’une certaine métrique. Nous identi-
fions les vitesses locales non-asymptotiques sur la
séparation nécessaire pour assurer l’existence d’un
test uniformément consistant et nous donnons leur
dépendance précise par rapport à l’hypothèse nulle

pour différentes distances de séparation. Nous identi-
fions également les tests locaux optimaux correspon-
dants. Nous étudions le problème d’estimation de lois
discrètes avec contrainte de confidentialité differen-
tielle locale en supposant de plus que les données
sont issues d’un modèle de contamination adversa-
riale. Nous proposons un algorithme robuste aux out-
liers et adapté à la confidentialité, dont nous montrons
l’optimalité statistique ainsi que l’efficacité en temps
de calcul. Enfin, dans le cadre de la régression non-
paramétrique, nous exhibons un estimateur adapta-
tif à la régularité, capable d’interpoler tous les points
de données avec grande probabilité tout en atteignant
l’optimalité statistique - un phenomène connu sous le
nom de “benign overfitting”.

Title : Topics in high-dimensional and non-parametric inference

Keywords : Minimax testing, robust statistics, local differential privacy, nonparametric regression, high-
dimensional statistics, discrete distributions

Abstract : In this thesis, we consider the following
topics: Local minimax testing, estimation under the
combined constraints of robustness and local diffe-
rential privacy, estimation of discrete distributions un-
der low-rank assumptions, adaptive estimation in non-
parametric regression with benign overfitting. A first
theme addressed in this thesis is the local minimax
goodness-of-fit testing problem for high-dimensional
discrete distributions and Hölder-smooth densities.
The problem consists in testing equality to a given dis-
tribution when observing iid data, against an alterna-
tive separated from the null distribution in some given
metric. We identify the sharp non-asymptotic local mi-
nimax rates on the separation needed to ensure the
existence of a uniformly consistent test and give its
precise dependency on the null distribution for a va-

riety of separation distances. We also derive the cor-
responding local minimax tests. In the second part of
the thesis, we study an estimation problem with lear-
ning constraints. We consider the problem of estima-
ting discrete distributions under local differential pri-
vacy, assuming also that the data follow an adversarial
contamination model. We propose a locally differen-
tially private algorithm that is robust to adversarially
chosen outliers. We prove its near statistical optima-
lity and show that it has polynomial time complexity.
In the third part of the thesis, we consider the non-
parametric regression setting, and we show that local
polynomial estimators with singular kernel can be mi-
nimax optimal and adaptive to unknown smoothness,
while interpolating all the datapoints with high proba-
bility – a phenomenon known as “benign overfitting”.
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