Online Matching in Bipartite Graphs

Flore Sentenac



Motivations: Dynamic
allocation



Ad - User allocation

[DEoTHION [ o

O
mj{ (&) @
peucEoT
=]
\ an
Nestie . d]{

MANGO @ L]

D =E3

KA
sGaumont @
ot

® o o

Garrefour

4D !



Ad - User allocation

[
N

A

Nestle

MANGO -\/
:::G‘.';lumont O

3 =3

<»/\:

Carrefour

= <)



Problem definition



Matching on a Bipartite graph

U Vv
le o1
Graph G = (U, V), €) bipartite if:
e Set of vertices is U/ UV,
e Only edges between U/ and V: 20 o2

ECUXV.

3e ®3



Matching on a Bipartite graph
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A matching is a set of edges with
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no common vertices.
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Matching on a Bipartite graph
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Online Matching
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Fort=1,..,|V|
e v; arrives along with its edges
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Online Matching
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le ® 1
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Evaluating the performance

u v u v
1 1 le ® 1
2@ ° 2 2@ ® 2
3 3 3@ 3

OPT(G) =3 ALG(G) =2



Competitive ratio

Definition
The competitive ratio is defined as:
EIALG(9)]

CR. = mgln OPT(3)

Note that 0 < C.R. <1, and the higher the better.
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The usual frameworks

e Adversarial (Adv): G can be any graph, the vertices of V arrive in
any order.

e Random Order (RO): G can be any graph, the vertices of ) arrive
in random order.

e Stochastic (IID): The vertices of V are drawn iid from a
distribution. (precise definition given latter)
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The usual frameworks

e Adversarial (Adv): G can be any graph, the vertices of V arrive in
any order.

e Random Order (RO): G can be any graph, the vertices of V arrive
in random order.

e Stochastic (IID): The vertices of V are drawn iid from a
distribution. (precise definition given latter)

C.R.(Adv) < C.R.(RO) < C.R.(IID)
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The simplest algorithm :
GREEDY



GREEDY

Algorithm 1: GREEDY Algorithm
1 fort=1,..,|V| do
2 Match v; to any free neighbor;

3 end

Theorem

In the Adversarial setting,

C.R.(GREEDY) >

N =
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Proof: For every "missed” match,
there is at least one "successful”
match.

2@
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GREEDY with Adversarial Arrivals: A difficult situation

TR
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Using correlated
randomness : RANKING



RANKING

Algorithm 2: RANKING Algorithm

Draw a random permutation ;
fori=1,...|U| do
‘ Assign to u; rank 7(/);
end
for t =1,..,|V| do
‘ Match v; to its lowest ranked free neighbor;

N o a0 B~ W No=

end
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RANKING

m3)=1e
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RANKING

18



RANKING

U 1%
T(l)=2e 1
7(2)=3 @ ® 2
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RANKING

U 1%
r(l)=2e 1
7(2) =3 @ ® 2
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RANKING

u 1%
r(1)=2e 1
m(2) =3 @ ® 2
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RANKING

7(2) =3 @ ® 2
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Back to GREEDY's difficult situation

TR
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RANKING

Theorem

In the Adversarial setting,

C.R.(RANKING) > 1 — =,
€

Note : 17%%0.63
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In our toolbox :
Primal-Dual Analysis

21



Maximum Matching problem as an LP

Finding a maximum matching in the graph G = (U, V, ) is equivalent to
finding a solution of the following I-LP:

xuw € {0,1},V(u,v) € &
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Maximum Matching problem as an LP

Matching linear program (P)

maximize E Xuv

(u,v)EE
s.t. Z Xow < L,VYuelU
vi(u,v)EE
Z X <1L,Vv ey
u:(u,v)eE
Xoy > 0,Y(u,v) €€

Note: On bipartite graphs, the value of the relaxed program and the
original one match.
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The dual problem

Dual to the Matching linear program (D)

minimize Z oy + Z By

ueld vey
sit. ay + 8, > 1,V(u,v) €€
a, >0, 8,>0, YVueld,veV

Note: This LP corresponds to the vertex cover problem.

24



Matching on a Bipartite graph

U 1%

Dual to the Matching linear
program (D) le o1
minimize Z oy + Z By

uel vey

st.oa,+ B, >1,Y(u,v) €€ 20 ® 2

a, 20, B, >0
Note : this LP corresponds to the
vertex cover problem. 3e 03

25



Overcomplicating the analysis of GREEDY

Algorithm 3: Primal Dual update for GREEDY
1 fort=1,..,|V| do

2 if v has a free neighbor u then

3 Add (u,v) to M;

4 Ko < 15 // primal update
5 By 3.6, 3 // dual update
6 end

7 end
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Overcomplicating the analysis of GREEDY

V(u,v) €& 2(0y +B,)>1 = (2&,2B) is an admissible sol. of (D):
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Overcomplicating the analysis of GREEDY

Y(u,v) €& 2(6y +B,)>1 = (2&,2B) is an admissible sol. of (D):

2ALG(G) =2 Kuy
(u,v)
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Overcomplicating the analysis of GREEDY

V(u,v) € &, 2(ay+B,) >1 = (2&,20) is an admissible sol. of (D):

2ALG(G) =2 ) Ky
(

u,v)

ZZZ&U+QZBV

uel vey
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Overcomplicating the analysis of GREEDY

V(u,v) € E, 2(dy + B,) > 1 = (2&,20) is an admissible sol. of (D):

2ALG(G) =2 )~ %y
(

u,v)
=2 Z &u +2 Z Bv
uel vey

>> ar+ > B

uel vey
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Overcomplicating the analysis of GREEDY

V(u,v) € E, 2(dy + B,) > 1 = (2&,20) is an admissible sol. of (D):

2ALG(G) =2 ) %,
(

u,v)

:2Z&u+223v

ueld vey

ZZ&?}—O—ZB;

ueld vey

= OPT(G)
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What about RANKING ?

Algorithm 4: Primal Dual update for RANKING

1 for uec U do
2 Draw r, ~ U([0,1])

3 end

4 forv=1,.,|V| do

5 u = arg min{r,|u unmatched, (u,v) € £};
6 if u#( then
7
8
9

Add (u,v) to M;

Ry <1 // primal update
By — (1—g(r)/c, au < g(r)/c; // dual update
10 end

28



Primal-Dual Analysis of RANKING

Lemma
If g(x) =e'and c=1—1, then, ¥(u,v) € &:

Ela, + 5] > 1

zmz@v]

ueld vey

(1-3) T+ X

uel vey

E[ALG(G)] = (1 - i) E

Y

(1 - i) OPT(G)
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When you’ve got a hammer...

e We can study algorithms on weighted graphs.
e Other problems: Online Set Cover, Online Caching...
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GREEDY Random Order

m(l) =2 1 1 (1) =2

m(3) =1 3 3 7(3) =1
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GREEDY

Theorem

In the Random Order setting,

C.R.(GREEDY) > 1— .
@

Note : 17%%0.63
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Worse case for RANKING

Upper triangular matrix:

vV
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Stochastic arrivals
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The Erdos-Renyi bipartite graph

Definition of G(N, N, c)
o U=V =N
e P((u,v)el)=5

What is the performance of GREEDY on G(N, N, c) ?
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In our toolbox :

The Differential Equation
Method



t+1

M; = number of matched vertices at t,

P(vey1 matched [My) =1 — (1 — %)N—M,

= E[Mey1 — Me[M]

37



Turning the discrete process into an ODE

Define the normalized random variable:

38



Turning the discrete process into an ODE

Define the normalized random variable:

Z(r) = M(/OIT), 0<r<Ll
We have:
E[Z(r+1/N) = Z(7) | Z(7)] . (1 B E)N(lfz(-r))
N

1/N
=1— e <=2 4 o(1).
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Turning the discrete process into an ODE

Define the normalized random variable:

Z(r) = M(/CIT), 0<r<1.
We have:
E[Z(r +1/N)—Z(1) | Z(7)] _ c\N1-2(r))
ezl )

=1— e <=2 4 o(1).
As N — oo, we arrive at the differential equation:

dz(7) ffil
_ 1 e—cli-z(r)
dt €
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Wormald’s Theorem

Under the following conditions:
e the increments of the discrete random process are bounded a.s. by a
constant.

e the function in the ODE is regular enough (Lipschitz),
(1 — e=<(=2(7) in the example).

e the approximation between the expectation and the function is small
enough.

Then the difference between the discrete process M; and the solution of
the ODE Nz(t/N) is o(N) w.h.p..[1]
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Final result

GREEDY (G(N.N.c)) & | (e<1)
N N—+oo

Theorem
The asymptotic C.R. of the GREEDY algorithm on any Erdos-Renyi
graph is lower bounded as:

C.R.(GREEDY (G(N, N, c))) > 0.837

40



When you’ve got a hammer..

e GREEDY can be studied on a larger class of graphs (configuration
model).

e Study random graph processes: find the size of the k-core of a
graph, the largest independent set in a d-regular graph...
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The Configuration Model

Introduced by Bollobds in 1980.

Consider two degree sequences
dV=(dY,...,d¥)eNN, N>1 Ay
v_ v Y T 2, sty dl=) d’
dV=(d/,...,d¥)eNT, T>1, — —
Interpretation: dY is the degree of the i-th vertex of U.

The associated bipartite configuration model CM(dY,d") is obtained
through a uniform pairing of the half-edges.

42



Example: d =3,dY =2,dY =2,dY =1 and d)/ =3,d) =3,dy =2.

ul.g

> U1
U2 o

> U2
U3 o

>» U3
Ug o
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Example: dV =3,dY =2,dY =2,dY =1 and dY =3,d) =3,dy =2.
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Example: dV =3,dY =2,dY =2,dY =1 and dY =3,d) =3,dy =2.
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Example: dIU = 37 d2U =2, d3U = 27 dz{j =1and d1v = 3, dQV = 3, d3v = 2

~ \\\\\ \\
R T
Uz(”'~— \\\\
~
N
> V2
U3 o
>» U3
Ug o
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Example: dY =3,dY =2,dY =2,dY =1and dY =3,dY =3,dY =2.

-~ ~N
R T
u2<: \\\
T - ~
= N
\\“_>> Vo
U3 o
>» U3
Ug o
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Example: dY =3,dY =2,dY =2,dY =1and dY =3,dY =3,dY =2.

-~ ~N
R T
u2<: \\\
T - ~
= N
= = \
\“_? Vg
’U,3.<”/
>» U3
Ug o
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Example: dV =3,d¢ =2,dY =2, dY =1 and d) =3,dY =3,d) =2.

~ \\ ~N
\\\\ > J%!
u2<#~~—— T~
- S
- N
\\“‘}} vy
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U1
Uy

V2
U2

U3
us
Uy

43



Example: d =3,dY =2,dY =2, dY =1 and d) =3,d) =3,dy =2.

multiple edge

Uy

U1
U2

V2
us

U3
Uy
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Random degree sequences

e 7y, my: two proba on N with expectations and finite 2nd moment.
Ly = Z imy(i) and py = Z iy (i).
i>0 i>0

.. N
U y i-i.d. U
L] dl?"'ﬂdN & WYy Zd’ N/JUN'
i=1

.. T
v v i.i.d. Voo
° dla"'vdT ~ Ty, Zd: Np,\/T.
i=1

Construction of configuration model : sequentially match half-edges.
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Discard o(N) + o(T) unpaired half-edges in U or V.
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Random degree sequences

e 7y, my: two proba on N with expectations and finite 2nd moment.
Ly = Z imy(i) and py = Z iy (i).
i>0 i>0
U y i-i.d. Wy U
.dlv"'ﬂdN ~ Ty, Zd’ %/JUN'
i=1
v iid. LIgERy
.,dT ~ Ty, Zd: %p,\/T.
i=1

Vv
o d’,..

Construction of configuration model : sequentially match half-edges.

1 - Compatibility condition: pyN = py T.

Discard o(N) + o(T) unpaired half-edges in U or V.

2 - Sparsity condition: py = o(T).

Discard o( T + N) multiple edges.

~~ Sparse random bipartite graph CM(dY, d") with asymptotic degree

sequences given by my and 7. "



Greedy Online Matching
Algorithm on a Bipartite
Configuration Model



Definition with an example

U2€

U3 o—

46



Definition with an example

v1

U2€

U3 o—

46



Definition with an example

U2€

U3 o—

46



Definition with an example
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Definition with an example
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Definition with an example

1 v
Ul L

v
u2 2 2
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Definition with an example
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Definition with an example
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Definition with an example

Ul s, @
2
U2 &« 231 g2
My = {{Ul,vl},{UQ,’UQ}}
U3 @—
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Definition with an example

ul

My = {{ulavl}v {uQ,vQ}}
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Our result

e M(s): matching obtained after seeing a proportion s of V-vertices.
e Generating series:

du(s) = mu(i)s'  and  y(s) =) my(i)s'.

i>0 i>0
Theorem

Let G be the unique solution of the following ordinary differential
equation:

g Lo ov (1= 00— 66))
R R 5

G(0) = 0.

Then, the following convergence holds in probability:

M)
2 D 1o 0u(1- 6().

47



e Non-asymptotic bounds: M(s)/N concentrates around G (with
additional assumptions on the tails of 7wy and 7y).

e Generalization to weighted matching where each vertex u € U has
a capacity wy,.

48



The d-regular case

Take my = my = d4: all vertices have degree d.

Figure 1: Numerical computations (on Scilab, results are almost
instantaneous) of GREEDY performances for d = 2 (blue), d = 3 (red), d = 4
(green), d = 6 (black) and d = 10 (magenta).
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The d-regular case

Take my = my = d4: all vertices have degree d.

Figure 2: Difference between the theoretical performances and simulated
performances of the GREEDY algorithm on the d-regular graph (d = 4) on 5

independent runs, with N = 100, 1000, 10000.
50



A last result

GREEDY vs. RANKING
GREEDY asymptotically outperforms RANKING in some configuration
models.

Example: the 2-regular graphs.

e In 2-regular graphs, if the incoming vertex has a free neighbor of
degree 1 and another free neighbor of degree 2, Ranking picks the
free vertex

e of degree 2 with proba 2/3; [Greedy w.p. 1/2]
e of degree 1 with proba 1/3 ; [Greedy w.p. 1/2]

e If v has degree 1, it was not picked before, hence its rank is high.

e Ranking takes the wrong decision more frequently

51



Thank youl!
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